Explicit formulae for time-space Brownian chaos

被引:8
作者
Peccati, G [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris, France
[2] Univ L Bocconi, Ist Metodi Quantitat, I-20136 Milan, Italy
关键词
Brownian bridge; Brownian motion; Clark-Ocone formula; enlargement of filtrations; Hardy operators; static hedging; Stroock's formula; time-space chaos;
D O I
10.3150/bj/1068129009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F be a square-integrable and infinitely weakly differentiable functional of a standard Brownian motion X: we show that the nth integrand in the time-space chaotic decomposition of F has the form E(alpha((n))D(n)F\X-t1,...,X-tn), where alpha((n)) is a transform of Hardy type and D-n denotes the nth derivative operator. In this way, we complete the results of previous papers, and provide a time-space counterpart to the classic Stroock formulae for Wiener chaos. Our main tool is an extension of the Clark-Ocone formula in the context of initially enlarged filtrations. We discuss an application to the static hedging of path-dependent options in a continuous-time financial model driven by X. A formal connection between our results and the orthogonal decomposition of the space of square-integrable functionals of a standard Brownian bridge - as proved by Gosselin and Wurzbacher - is also established.
引用
收藏
页码:25 / 48
页数:24
相关论文
共 22 条
  • [1] [Anonymous], STOCHASTICS
  • [2] BARUCCI E, 1998, ADV FUTURES OPTIONS, P103
  • [3] Static hedging of exotic options
    Carr, P
    Ellis, K
    Gupta, V
    [J]. JOURNAL OF FINANCE, 1998, 53 (03) : 1165 - 1190
  • [4] Clark J. M. C., 1970, ANN MATH STAT, V41, P1281
  • [5] CLARK JMC, 1971, ANN MATH STAT, V42, P1778
  • [6] Elliot R.J., 1982, STOCHASTIC CALCULUS
  • [7] On weak Brownian motions of arbitrary order
    Föllmer, H
    Wu, CT
    Yor, M
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (04): : 447 - 487
  • [8] GOSSELIN P, 1997, SEMIN PROBABILITY, V31, P225
  • [9] Hardy G.H., 1952, Inequalities
  • [10] LACOSTE V, 1996, MATH FINANC, V6, P197