PULLBACKS OF EISENSTEIN SERIES FROM GU(3,3) AND CRITICAL L-VALUES FOR GSp(4) x GL(2)

被引:12
作者
Saha, Abhishek [1 ]
机构
[1] ETH, CH-8092 Zurich, Switzerland
关键词
modular form; automorphic form; automorphic representation; L-function; special values; Siegel modular form; Eisenstein series; GSp(4); Deligne's conjecture; pullback formula; SIEGEL-WEIL FORMULA;
D O I
10.2140/pjm.2010.246.435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a genus two Siegel newform and g a classical newform, both of squarefree levels and of equal weight l. We prove a pullback formula for certain Eisenstein series-thus generalizing a construction of Shimura-and use this to derive an explicit integral representation for the degree eight L-function L(s, F x g). This integral representation involves the pullback of a simple Siegel-type Eisenstein series on the unitary group GU(3, 3). As an application, we prove a reciprocity law-predicted by Deligne's conjecture-for the critical special values L(m, F x g) where m is an element of Z with 2 <= m <= l/2 = 1.
引用
收藏
页码:435 / 486
页数:52
相关论文
共 21 条