Progress in deep learning-based dental and maxillofacial image analysis: A systematic review

被引:35
作者
Singh, Nripendra Kumar [1 ]
Raza, Khalid [1 ]
机构
[1] Jamia Millia Islamia, Dept Comp Sci, New Delhi 110025, India
关键词
Artificial Intelligence; Deep learning; Machine learning; Dental images; Convolutional neural network; COMPROMISED TEETH; NEURAL-NETWORKS; CLASSIFICATION; HEALTH;
D O I
10.1016/j.eswa.2022.116968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: With the advent of deep learning in modern computing there has been unprecedented progress in image processing and segmentation. Deep learning-based image pattern recognition achieved a significant place in interpreting dental radiographs towards automatic diagnosis and treatment. In context with dental imaging, deep learning-based image analysis has been able to perform dental structure segmentation, classification, and identification of several common dental diseases with significant 90% accuracy. These results open a window of hope for better diagnosis and treatment planning in dental medicine. This review systematically presents recent advances in deep learning-based dental and maxillofacial image analysis. Materials and methods: We performed an extensive literature survey using the PubMed literature repository for identifying suitable articles. We shortlisted more than 75 articles that use deep learning for dental image seg-mentation, object detection, classification, and other image processing-related tasks. This study includes vari-ables such as the size of the dataset, dental imaging modality, deep learning architecture, and performance evaluation measures. Results: We have summarized recent developments and a concise overview of studies on various applications of dental and maxillofacial image analysis. We primarily discussed how deep learning techniques have been exploited in areas such as tooth detection and labeling, dental caries, plaque, periodontal condition, osteoporosis, oral lesion, anatomical landmarking, age, and gender estimation. The challenges and future research directions in the area have been extensively discussed. Conclusion: Undoubtedly remarkable progress is witnessed in dental image analysis in recent years. However, many crucial aspects still need to be addressed including standardization of data and generalization in AI-based solutions towards dental and maxillofacial image analysis for the diagnosis and better treatment aid in the field of dentistry which will open a new avenue in dental clinical practices.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Deep learning-based lung image registration: A review
    Xiao, Hanguang
    Xue, Xufeng
    Zhu, Mi
    Jiang, Xin
    Xia, Qingling
    Chen, Kai
    Li, Huanqi
    Long, Li
    Peng, Ke
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [32] Image-Based Surface Defect Detection Using Deep Learning: A Review
    Bhatt, Prahar M.
    Malhan, Rishi K.
    Rajendran, Pradeep
    Shah, Brual C.
    Thakar, Shantanu
    Yoon, Yeo Jung
    Gupta, Satyandra K.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2021, 21 (04)
  • [33] Deep Learning-Based Rumor Detection on Microblogging Platforms: A Systematic Review
    Al-Sarem, Mohammed
    Boulila, Wadii
    Al-Harby, Muna
    Qadir, Junaid
    Alsaeedi, Abdullah
    IEEE ACCESS, 2019, 7 : 152788 - 152812
  • [34] Multimodal Deep Learning-Based Prognostication in Glioma Patients: A Systematic Review
    Alleman, Kaitlyn
    Knecht, Erik
    Huang, Jonathan
    Zhang, Lu
    Lam, Sandi
    DeCuypere, Michael
    CANCERS, 2023, 15 (02)
  • [35] A Review of the State of the Art and Future Challenges of Deep Learning-Based Beamforming
    Al Kassir, Haya
    Zaharis, Zaharias D.
    Lazaridis, Pavlos, I
    Kantartzis, Nikolaos, V
    Yioultsis, Traianos, V
    Xenos, Thomas D.
    IEEE ACCESS, 2022, 10 : 80869 - 80882
  • [36] Deep learning with image-based autism spectrum disorder analysis: A systematic review
    Uddin, Md. Zasim
    Shahriar, Md. Arif
    Mahamood, Md. Nadim
    Alnajjar, Fady
    Pramanik, Md. Ileas
    Ahad, Md Atiqur Rahman
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [37] Advances in deep learning-based applications for Raman spectroscopy analysis: A mini-review of the progress and challenges
    Boateng, Derrick
    MICROCHEMICAL JOURNAL, 2025, 209
  • [38] Deep Learning-Based Hip X-ray Image Analysis for Predicting Osteoporosis
    Feng, Shang-Wen
    Lin, Szu-Yin
    Chiang, Yi-Hung
    Lu, Meng-Han
    Chao, Yu-Hsiang
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [39] Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review
    Signoroni, Alberto
    Savardi, Mattia
    Baronio, Annalisa
    Benini, Sergio
    JOURNAL OF IMAGING, 2019, 5 (05)
  • [40] Deep Learning-Based Image Classification and Segmentation on Digital Histopathology for Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis
    Pirayesh, Zeynab
    Mohammad-Rahimi, Hossein
    Ghasemi, Nikoo
    Motamedian, Saeed-Reza
    Sadeghi, Terme Sarrafan
    Koohi, Hediye
    Rokhshad, Rata
    Lotfi, Shima Moradian
    Najafi, Anahita
    Alajaji, Shahd A.
    Khoury, Zaid H.
    Jessri, Maryam
    Sultan, Ahmed S.
    JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2024, 53 (09) : 551 - 566