A Comparison between Second-Order Post-Newtonian Hamiltonian and Coherent Post-Newtonian Lagrangian in Spinning Compact Binaries

被引:3
作者
Cheng, Xu-Hui [1 ]
Huang, Guo-Qing [1 ]
机构
[1] Nanchang Univ, Dept Phys, Nanchang 330031, Jiangxi, Peoples R China
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
PN Hamiltonian; coherent PN Lagrangian; chaotic dynamics; compact binary; BLACK-HOLES; DYNAMICS; CHAOS; PRECESSION; SYSTEMS; EQUIVALENCE; WAVES; ORDER;
D O I
10.3390/sym13040584
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In relativistic celestial mechanics, post-Newtonian (PN) Lagrangian and PN Hamiltonian formulations are not equivalent to the same PN order as our previous work in PRD (2015). Usually, an approximate Lagrangian is used to discuss the difference between a PN Hamiltonian and a PN Lagrangian. In this paper, we investigate the dynamics of compact binary systems for Hamiltonians and Lagrangians, including Newtonian, post-Newtonian (1PN and 2PN), and spin-orbit coupling and spin-spin coupling parts. Additionally, coherent equations of motion for 2PN Lagrangian are adopted here to make the comparison with Hamiltonian approaches and approximate Lagrangian approaches at the same condition and same PN order. The completely opposite nature of the dynamics shows that using an approximate PN Lagrangian is not convincing. Hence, using the coherent PN Lagrangian is necessary for obtaining an exact result in the research of dynamics of compact binary at certain PN order. Meanwhile, numerical investigations from the spinning compact binaries show that the 2PN term plays an important role in causing chaos in the PN Hamiltonian system.
引用
收藏
页数:16
相关论文
共 67 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]  
Asada H, 1997, PROG THEOR PHYS SUPP, P123, DOI 10.1143/PTPS.128.123
[3]  
Blanchet L., 2003, ARXIVGRQC0304014
[4]   Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors [J].
Buonanno, A ;
Chen, YB .
PHYSICAL REVIEW D, 2001, 64 (04)
[5]   A Brief History of Gravitational Waves [J].
Cervantes-Cota, Jorge L. ;
Galindo-Uribarri, Salvador ;
Smoot, George F. .
UNIVERSE, 2016, 2 (03)
[6]   Drift-preserving numerical integrators for stochastic Hamiltonian systems [J].
Chen, Chuchu ;
Cohen, David ;
D'Ambrosio, Raffaele ;
Lang, Annika .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (02)
[7]  
Chen RC, 2016, COMMUN THEOR PHYS, V65, P321, DOI 10.1088/0253-6102/65/3/321
[8]   Comment on "Ruling out chaos in compact binary systems" [J].
Cornish, NJ ;
Levin, J .
PHYSICAL REVIEW LETTERS, 2002, 89 (17)
[9]   Chaos and damping in the post-Newtonian description of spinning compact binaries [J].
Cornish, NJ ;
Levin, J .
PHYSICAL REVIEW D, 2003, 68 (02)
[10]   Chaos and gravitational waves [J].
Cornish, NJ .
PHYSICAL REVIEW D, 2001, 64 (08)