Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization

被引:154
作者
Cao, Helin [1 ,2 ]
Yu, Qingkai [3 ]
Jauregui, L. A. [2 ,4 ]
Tian, J. [1 ,2 ]
Wu, W. [3 ]
Liu, Z. [3 ]
Jalilian, R. [1 ,2 ]
Benjamin, D. K. [5 ]
Jiang, Z. [5 ]
Bao, J. [3 ]
Pei, S. S. [3 ]
Chen, Yong P. [1 ,2 ,4 ]
机构
[1] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA
[4] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[5] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
carrier mobility; chemical vapour deposition; CVD coatings; electronic structure; graphene; monolayers; quantum Hall effect; Raman spectra; weak localisation; FEW-LAYER GRAPHENE; LARGE-AREA; FILMS;
D O I
10.1063/1.3371684
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on electronic properties of graphene synthesized by chemical vapor deposition (CVD) on copper then transferred to SiO2/Si. Wafer-scale (up to 4 in.) graphene films have been synthesized, consisting dominantly of monolayer graphene as indicated by spectroscopic Raman mapping. Low temperature transport measurements are performed on microdevices fabricated from such CVD graphene, displaying ambipolar field effect (with on/off ratio similar to 5 and carrier mobilities up to similar to 3000 cm(2)/V s) and "half-integer" quantum Hall effect, a hall-mark of intrinsic electronic properties of monolayer graphene. We also observe weak localization and extract information about phase coherence and scattering of carriers.
引用
收藏
页数:3
相关论文
共 33 条
  • [1] BEENAKKER WJ, 1991, QUANTUM TRANSPORT SE, V44
  • [2] Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers
    Berciaud, Stephane
    Ryu, Sunmin
    Brus, Louis E.
    Heinz, Tony F.
    [J]. NANO LETTERS, 2009, 9 (01) : 346 - 352
  • [3] Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties
    Cao, Helin
    Yu, Qingkai
    Colby, Robert
    Pandey, Deepak
    Park, C. S.
    Lian, Jie
    Zemlyanov, Dmitry
    Childres, Isaac
    Drachev, Vladimir
    Stach, Eric A.
    Hussain, Muhammad
    Li, Hao
    Pei, Steven S.
    Chen, Yong P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 107 (04)
  • [4] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [5] Synthesis, Transfer, and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition
    De Arco, Lewis Gomez
    Zhang, Yi
    Kumar, Akshay
    Zhou, Chongwu
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2009, 8 (02) : 135 - 138
  • [6] Epitaxial graphene
    de Heer, Walt A.
    Berger, Claire
    Wu, Xiaosong
    First, Phillip N.
    Conrad, Edward H.
    Li, Xuebin
    Li, Tianbo
    Sprinkle, Michael
    Hass, Joanna
    Sadowski, Marcin L.
    Potemski, Marek
    Martinez, Gerard
    [J]. SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) : 92 - 100
  • [7] Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
  • [8] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [9] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [10] JOBST J, ARXIV09081900V1, P91112