High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

被引:214
作者
Ding, Yunhong [1 ]
Bacco, Davide [1 ]
Dalgaard, Kjeld [1 ]
Cai, Xinlun [2 ]
Zhou, Xiaoqi [3 ]
Rottwitt, Karsten [1 ]
Oxenlowe, Leif Katsuo [1 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
关键词
APODIZED GRATING COUPLER; SOI PLATFORM; MODULATION; SECURITY;
D O I
10.1038/s41534-017-0026-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution provides an efficient means to exchange information in an unconditionally secure way. Historically, quantum key distribution protocols have been based on binary signal formats, such as two polarization states, and the transmitted information efficiency of the quantum key is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually unbiased bases in a four-dimensional Hilbert space, and achieved low and stable quantum bit error rate well below both the coherent attack and individual attack limits. Compared to previous demonstrations, the use of a multicore fiber in our protocol provides a much more efficient way to create high-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling manipulating high-dimensional quantum states in a compact and stable manner. Our demonstration paves the way to utilize state-of-the-art multicore fibers for noise tolerance high-dimensional quantum key distribution, and boost silicon photonics for high information efficiency quantum communications.
引用
收藏
页数:7
相关论文
共 47 条
[1]  
[Anonymous], 1984, P IEEE INR C COMP SY
[2]   Two-dimensional distributed-phase-reference protocol for quantum key distribution [J].
Bacco, Davide ;
Christensen, Jesper Bjerge ;
Castaneda, Mario A. Usuga ;
Ding, Yunhong ;
Forchhammer, Soren ;
Rottwitt, Karsten ;
Oxenlowe, Leif Katsuo .
SCIENTIFIC REPORTS, 2016, 6
[3]   Experimental quantum key distribution with finite-key security analysis for noisy channels [J].
Bacco, Davide ;
Canale, Matteo ;
Laurenti, Nicola ;
Vallone, Giuseppe ;
Villoresi, Paolo .
NATURE COMMUNICATIONS, 2013, 4
[4]   A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires [J].
Bogaerts, Wim ;
Taillaert, Dirk ;
Dumon, Pieter ;
Van Thourhout, Dries ;
Baets, Roel .
OPTICS EXPRESS, 2007, 15 (04) :1567-1578
[5]  
Boykin P. O., ARXIVQUANTPH0502024
[6]   Practical high-dimensional quantum key distribution with decoy states [J].
Bunandar, Darius ;
Zhang, Zheshen ;
Shapiro, Jeffrey H. ;
Englund, Dirk R. .
PHYSICAL REVIEW A, 2015, 91 (02)
[7]  
Caas G., 2016, ARXIV161001812
[8]  
Caspers J. N., 2014, SPIE PHOTONICS EUROP
[9]   Security of quantum key distribution using d-level systems -: art. no. 127902 [J].
Cerf, NJ ;
Bourennane, M ;
Karlsson, A ;
Gisin, N .
PHYSICAL REVIEW LETTERS, 2002, 88 (12) :4-127902
[10]   Hybrid silicon and lithium niobate electro-optical ring modulator [J].
Chen, Li ;
Xu, Qiang ;
Wood, Michael G. ;
Reano, Ronald M. .
OPTICA, 2014, 1 (02) :112-118