High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

被引:198
作者
Ding, Yunhong [1 ]
Bacco, Davide [1 ]
Dalgaard, Kjeld [1 ]
Cai, Xinlun [2 ]
Zhou, Xiaoqi [3 ]
Rottwitt, Karsten [1 ]
Oxenlowe, Leif Katsuo [1 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou, Guangdong, Peoples R China
来源
NPJ QUANTUM INFORMATION | 2017年 / 3卷
关键词
APODIZED GRATING COUPLER; SOI PLATFORM; MODULATION; SECURITY;
D O I
10.1038/s41534-017-0026-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution provides an efficient means to exchange information in an unconditionally secure way. Historically, quantum key distribution protocols have been based on binary signal formats, such as two polarization states, and the transmitted information efficiency of the quantum key is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually unbiased bases in a four-dimensional Hilbert space, and achieved low and stable quantum bit error rate well below both the coherent attack and individual attack limits. Compared to previous demonstrations, the use of a multicore fiber in our protocol provides a much more efficient way to create high-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling manipulating high-dimensional quantum states in a compact and stable manner. Our demonstration paves the way to utilize state-of-the-art multicore fibers for noise tolerance high-dimensional quantum key distribution, and boost silicon photonics for high information efficiency quantum communications.
引用
收藏
页数:7
相关论文
共 47 条
  • [1] [Anonymous], 1984, P IEEE INR C COMP SY
  • [2] Two-dimensional distributed-phase-reference protocol for quantum key distribution
    Bacco, Davide
    Christensen, Jesper Bjerge
    Castaneda, Mario A. Usuga
    Ding, Yunhong
    Forchhammer, Soren
    Rottwitt, Karsten
    Oxenlowe, Leif Katsuo
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [3] Experimental quantum key distribution with finite-key security analysis for noisy channels
    Bacco, Davide
    Canale, Matteo
    Laurenti, Nicola
    Vallone, Giuseppe
    Villoresi, Paolo
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [4] A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires
    Bogaerts, Wim
    Taillaert, Dirk
    Dumon, Pieter
    Van Thourhout, Dries
    Baets, Roel
    [J]. OPTICS EXPRESS, 2007, 15 (04): : 1567 - 1578
  • [5] Boykin P. O., ARXIVQUANTPH0502024
  • [6] Practical high-dimensional quantum key distribution with decoy states
    Bunandar, Darius
    Zhang, Zheshen
    Shapiro, Jeffrey H.
    Englund, Dirk R.
    [J]. PHYSICAL REVIEW A, 2015, 91 (02):
  • [7] Caas G., 2016, ARXIV161001812
  • [8] Caspers J. N., 2014, SPIE PHOTONICS EUROP
  • [9] Security of quantum key distribution using d-level systems -: art. no. 127902
    Cerf, NJ
    Bourennane, M
    Karlsson, A
    Gisin, N
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (12) : 4 - 127902
  • [10] Hybrid silicon and lithium niobate electro-optical ring modulator
    Chen, Li
    Xu, Qiang
    Wood, Michael G.
    Reano, Ronald M.
    [J]. OPTICA, 2014, 1 (02): : 112 - 118