GENERAL GROWTH;
WEAK SOLUTIONS;
VARIATIONAL-PROBLEMS;
REGULARITY;
EQUATIONS;
GRADIENT;
BOUNDEDNESS;
BOUNDARY;
D O I:
10.1007/s00205-018-1223-7
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Best possible second-order regularity is established for solutions to p-Laplacian type equations with and a square-integrable right-hand side. Our results provide a nonlinear counterpart of the classical L (2)-coercivity theory for linear problems, which is missing in the existing literature. Both local and global estimates are obtained. The latter apply to solutions to either Dirichlet or Neumann boundary value problems. Minimal regularity on the boundary of the domain is required, although our conclusions are new even for smooth domains. If the domain is convex, no regularity of its boundary is needed at all.
机构:
Univ South Bohemia, Fac Sci, Inst Math & Biomath, Branisovska 31, Ceske Budejovice 3705, Czech RepublicUniv South Bohemia, Fac Sci, Inst Math & Biomath, Branisovska 31, Ceske Budejovice 3705, Czech Republic
Danecek, Josef
Viszus, Eugen
论文数: 0引用数: 0
h-index: 0
机构:
Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, SlovakiaUniv South Bohemia, Fac Sci, Inst Math & Biomath, Branisovska 31, Ceske Budejovice 3705, Czech Republic
机构:
Univ South Bohemia, Inst Math & Biomath, Fac Sci, Ceske Budejovice 3705, Czech RepublicUniv South Bohemia, Inst Math & Biomath, Fac Sci, Ceske Budejovice 3705, Czech Republic
Danecek, Josef
Viszus, Eugen
论文数: 0引用数: 0
h-index: 0
机构:
Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, SlovakiaUniv South Bohemia, Inst Math & Biomath, Fac Sci, Ceske Budejovice 3705, Czech Republic
机构:
China Med Univ, Ctr Gen Educ, Taichung, Taiwan
China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, TaiwanPosts & Telecommun Inst Technol, Dept Sci Fundamentals, Hanoi, Vietnam