Multivariate spectral analysis using Cholesky decomposition

被引:36
作者
Dai, M [1 ]
Guo, WS [1 ]
机构
[1] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
bootstrap; Cholesky decomposition; multivariate time series; smoothing spline; spectral analysis;
D O I
10.1093/biomet/91.3.629
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose to smooth the Cholesky decomposition of a raw estimate of a multivariate spectrum, allowing different degrees of smoothness for different elements. The final spectral estimate is reconstructed from the smoothed Cholesky elements, and is consistent and positive definite. More importantly, the Cholesky decomposition matrix of the spectrum can be used as a transfer function in generating time series whose spectrum is identical to the given spectrum at the Fourier frequencies. This not only provides us with much flexibility in simulations, but also allows us to construct bootstrap confidence intervals for the multivariate spectrum by generating bootstrap samples using the Cholesky decomposition of the spectral estimate. A numerical example and an application to electroencephalogram data are used as illustrations.
引用
收藏
页码:629 / 643
页数:15
相关论文
共 11 条
[1]  
[Anonymous], 1981, Time series data analysis and theory, DOI 10.1201/b15288-24
[2]  
Brockwell P. J., 1987, TIME SERIES THEORY M
[3]  
Donald BP, 1994, Methods in experimental physics, V28, P313
[4]   ON BOOTSTRAPPING KERNEL SPECTRAL ESTIMATES [J].
FRANKE, J ;
HARDLE, W .
ANNALS OF STATISTICS, 1992, 20 (01) :121-145
[5]   BAYESIAN CONFIDENCE-INTERVALS FOR SMOOTHING SPLINES [J].
NYCHKA, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1134-1143
[6]   Automatic estimation of the cross-spectrum of a bivariate time series [J].
Pawitan, Y .
BIOMETRIKA, 1996, 83 (02) :419-432
[7]   SPECTRUM ESTIMATION AND HARMONIC-ANALYSIS [J].
THOMSON, DJ .
PROCEEDINGS OF THE IEEE, 1982, 70 (09) :1055-1096
[8]  
WAHBA G, 1983, J ROY STAT SOC B MET, V45, P133
[9]  
WAHBA G, 1990, CBMS NSF REG C SER A
[10]   A unified view of multitaper multivariate spectral estimation [J].
Walden, AT .
BIOMETRIKA, 2000, 87 (04) :767-788