Computational Modeling of Structure-Function of G Protein-Coupled Receptors with Applications for Drug Design

被引:37
作者
Li, Y. Y. [1 ,2 ]
Hou, T. J. [1 ,2 ]
Goddard, W. A., III [3 ]
机构
[1] Soochow Univ, Funct Nano & Soft Mat Lab, Suzhou 215123, Jiangsu, Peoples R China
[2] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
[3] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
关键词
GPCR; computational modeling; drug design; protein structure prediction; docking; molecular dynamics; activation mechanism; ligand-receptor interaction; BETA(2) ADRENERGIC-RECEPTOR; LIGHT-DEPENDENT CHANGES; DISTANCE GEOMETRY CALCULATIONS; TRANSMEMBRANE DOMAINS III; TRANSFER-RNA SYNTHETASE; PREDICTED 3D STRUCTURE; CRYSTAL-STRUCTURE; BINDING-SITE; LIGAND-BINDING; CONFORMATIONAL-CHANGES;
D O I
10.2174/092986710790827807
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
G protein-coupled receptors (GPCRs) mediate senses such as odor, taste, vision, and pain in mammals. In addition, important cell recognition and communication processes often involve GPCRs. Many diseases involve malfunction of GPCRs, making them important targets for drug development. Indeed, greater than 50 % of all marketed therapeutics act on those receptors. Unfortunately, the atomic-level structures are only available for rhodopsin, beta 2AR, beta 1AR, A2A adenosin and opsin. In silico computational methods, employing receptor-based modeling, offer a rational approach in the design of drugs targeting GPCRs. These approaches can be used to understand receptor selectivity and species specificity of drugs that interact with GPCRs. This review gives an overview of current computational approaches to GPCR model building; ligand-receptor interaction for drug design; and molecular mechanism of GPCR activation from simulation.
引用
收藏
页码:1167 / 1180
页数:14
相关论文
共 140 条
[1]   A 3D model of the delta opioid receptor and ligand-receptor complexes [J].
Alkorta, I ;
Loew, GH .
PROTEIN ENGINEERING, 1996, 9 (07) :573-583
[2]   2-Arylpropionic CXC chemokine receptor 1 (CXCR1) ligands as novel noncompetitive CXCL8 inhibitors [J].
Allegretti, M ;
Bertini, R ;
Cesta, MC ;
Bizzarri, C ;
Di Bitondo, R ;
Di Cioccio, V ;
Galliera, E ;
Berdini, V ;
Topai, A ;
Zampella, G ;
Russo, V ;
Di Bello, N ;
Nano, G ;
Nicolini, L ;
Locati, M ;
Fantucci, P ;
Florio, S ;
Colotta, F .
JOURNAL OF MEDICINAL CHEMISTRY, 2005, 48 (13) :4312-4331
[3]   Structural features and light-dependent changes in the sequence 306-322 extending from helix VII to the palmitoylation sites in rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Cai, KW ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1999, 38 (25) :7931-7937
[4]   Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Yang, K ;
Farrens, DL ;
Farahbakhsh, ZT ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1996, 35 (38) :12470-12478
[5]   Structural features and light-dependent changes in the sequence 59-75 connecting helices I and II in rhodopsin: A site-directed spin-labeling study [J].
Altenbach, C ;
Klein-Seetharaman, J ;
Hwa, J ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 1999, 38 (25) :7945-7949
[6]   Structure and function in rhodopsin: Mapping light-dependent changes in distance between residue 316 in helix 8 and residues in the sequence 60-75, covering the cytoplasmic end of helices TM1 and TM2 and their connection loop CL1 [J].
Altenbach, C ;
Klein-Seetharaman, J ;
Cai, KW ;
Khorana, HG ;
Hubbell, WL .
BIOCHEMISTRY, 2001, 40 (51) :15493-15500
[7]   Synthesis, biological evaluation, and receptor docking simulations of 2-[(acylamino)ethyl]-1,4-benzodiazepines as κ-opioid receptor agonists endowed with antinociceptive and antiamnesic activity [J].
Anzini, M ;
Canullo, L ;
Braile, C ;
Cappelli, A ;
Gallelli, A ;
Vomero, S ;
Menziani, MC ;
De Benedetti, PG ;
Rizzo, M ;
Collina, S ;
Azzolina, O ;
Sbacchi, M ;
Ghelardini, C ;
Galeotti, N .
JOURNAL OF MEDICINAL CHEMISTRY, 2003, 46 (18) :3853-3864
[8]   An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors [J].
Baldwin, JM ;
Schertler, GFX ;
Unger, VM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (01) :144-164
[9]  
Ballesteros J. A., 1995, Neuroscience Methods, V25, P366, DOI [10.1016/S1043-9471(05)80049-7, DOI 10.1016/S1043-9471(05)80049-7, DOI 10.1016/S1043-9471]
[10]   Structural mimicry in G protein-coupled receptors: Implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors [J].
Ballesteros, JA ;
Shi, L ;
Javitch, JA .
MOLECULAR PHARMACOLOGY, 2001, 60 (01) :1-19