On the numerical convergence and performance of different spatial discretization techniques for transient elastodynamic wave propagation problems

被引:19
作者
Tschoeke, Kilian [1 ]
Gravenkamp, Hauke [2 ]
机构
[1] Fraunhofer Inst Ceram Technol & Syst IKTS, D-01109 Dresden, Germany
[2] Univ Duisburg Essen, Dept Civil Engn, D-45141 Essen, Germany
关键词
Finite Difference Method; Elastodynamic Finite Integration Technique; Finite Element Method; Spectral Element Method; Scaled Boundary Finite Element Method; Wave propagation; FINITE-ELEMENT-METHOD; TIME-DOMAIN; MAXWELLS EQUATIONS; SHAPE FUNCTIONS; SIMULATION; GUIDES; PRIMER; MATRIX; MOTION;
D O I
10.1016/j.wavemoti.2018.07.002
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present a systematic investigation of several discretization approaches for transient elastodynamic wave propagation problems. This comparison includes a Finite Difference, a Finite Volume, a Finite Element, a Spectral Element and the Scaled Boundary Finite Element Method. Numerical examples are given for simple geometries with normalized parameters, for heterogeneous materials as well as for structures with arbitrarily shaped material interfaces. General conclusions regarding the accuracy of the methods are presented. Based on the essential numerical examples an expansion of the results to a wide range of problems and thus to numerous fields of application is possible. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 85
页数:24
相关论文
共 61 条
[1]  
[Anonymous], 1976, NUMERICAL METHOD FIN, DOI DOI 10.1002/NME.1620110913
[2]  
[Anonymous], 1991, THESIS U KASSEL KASS
[3]  
[Anonymous], THESIS
[4]  
Ansys Inc, 2017, ANS VERS 18 1 COMP P
[5]   Modeling wave propagation in damped waveguides of arbitrary cross-section [J].
Bartoli, Ivan ;
Marzani, Alessandro ;
di Scalea, Francesco Lanza ;
Viola, Erasmo .
JOURNAL OF SOUND AND VIBRATION, 2006, 295 (3-5) :685-707
[6]   A spectral super element for modelling of plate vibration. Part 1: general theory [J].
Birgersson, F ;
Finnveden, S ;
Nilsson, CM .
JOURNAL OF SOUND AND VIBRATION, 2005, 287 (1-2) :297-314
[7]   Simulation of acoustic scattering from an aluminum cylinder near a rough interface using the elastodynamic finite integration technique [J].
Calvo, D. C. ;
Rudd, K. E. ;
Zampolli, M. ;
Sanders, W. M. ;
Bibee, L. D. .
WAVE MOTION, 2010, 47 (08) :616-634
[8]   A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method [J].
Chen, D. ;
Birk, C. ;
Song, C. ;
Du, C. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (13) :937-959
[9]  
Collins S, 2013, GRIDS NUMERICAL WEAT, P111
[10]  
Cook R.D., 2002, Concepts and applications of finite element analysis