Importance of Architectural Asymmetry for Improved Triboelectric Nanogenerators with 3D Spacer Fabrics

被引:9
作者
Kwon, Jin-Hyuk [1 ]
Jeong, Jaebum [2 ]
Lee, Youngju [3 ,4 ]
Biswas, Swarup [4 ]
Park, Jun-Kyu [3 ]
Lee, Suwoong [3 ]
Lee, Dong-Wook [3 ]
Lee, Sohee [5 ]
Bae, Jin-Hyuk [1 ,6 ]
Kim, Hyeok [4 ]
机构
[1] Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu 415663, South Korea
[2] Korea Inst Ceram Engn & Technol KICET, Nano Mat Nano Technol Ctr, Jinju 52851, South Korea
[3] Korea Inst Ind Technol KITECH, Appl Robot R&D Dept, Ansan 15588, South Korea
[4] Univ Seoul, Inst Informat Technol, Sch Elect & Comp Engn, 163 Seoulsiripdaero,Dongdaemun Gu, Seoul 02504, South Korea
[5] Gyeongsang Natl Univ, Res Inst Nat Sci, Dept Clothing & Text, 501 Jinjudaero, Jinju 52828, Gyeongsangnamdo, South Korea
[6] Kyungpook Natl Univ, Sch Elect Engn, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
triboelectric nanogenerator; 3D spacer fabric; output voltage; architectural asymmetry; DESIGN;
D O I
10.1007/s13233-021-9052-1
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We investigated the importance of architectural asymmetry to improve the output voltage of the triboelectric nanogenerators (TENGs) with polyester/spandex blend 3D spacer fabrics. Different types of TENGs were fabricated by stacking the 3D spacer fabrics, polydimethylsiloxane (PDMS) films, and electrodes with different stack configurations. The 3D spacer fabric TENGs fabricated with higher architectural asymmetry exhibited higher output voltages than those fabricated with lower architectural asymmetry. In particular, the TENG with the PDMS/fabric/fabric configuration exhibited the highest maximum peak-to-peak output voltage among all types. The prominent increase in the TENG output voltage was ascribed to the relatively high architectural asymmetry in the device configuration and the relatively high effective density of triboelectric charges.
引用
收藏
页码:443 / 447
页数:5
相关论文
共 15 条
[1]   Nano- And Microfiber-Based Fully Fabric Triboelectric Nanogenerator For Wearable Devices [J].
Bae, Jong Hyuk ;
Oh, Hyun Ju ;
Song, Jinkyu ;
Kim, Do Kun ;
Yeang, Byeong Jin ;
Ko, Jae Hoon ;
Kim, Seong Hun ;
Lee, Woosung ;
Lim, Seung Ju .
POLYMERS, 2020, 12 (03)
[2]   A high density piezoelectric energy harvesting device from highway traffic - Design analysis and laboratory validation [J].
Chen, Cheng ;
Sharafi, Amir ;
Sun, Jian-Qiao .
APPLIED ENERGY, 2020, 269
[3]   Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence [J].
Dong, Kai ;
Peng, Xiao ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2020, 32 (05)
[4]   Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals [J].
Han, Yaojie ;
Han, Yufeng ;
Zhang, Xiaopan ;
Li, Lin ;
Zhang, Chengwu ;
Liu, Jinhua ;
Lu, Gang ;
Yu, Hai-Dong ;
Huang, Wei .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) :16442-16450
[5]   Progress in textile-based triboelectric nanogenerators for smart fabrics [J].
Hu, Youfan ;
Zheng, Zijian .
NANO ENERGY, 2019, 56 :16-24
[6]   Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power [J].
Huang, Tao ;
Zhang, Jing ;
Yu, Bin ;
Yu, Hao ;
Long, Hairu ;
Wang, Hongzhi ;
Zhang, Qinghua ;
Zhu, Meifang .
NANO ENERGY, 2019, 58 :375-383
[7]   Comparative Study of Triboelectric Nanogenerators with Differently Woven Cotton Textiles for Wearable Electronics [J].
Jeong, Jaebum ;
Kwon, Jin-Hyuk ;
Lim, Kyungmin ;
Biswas, Swarup ;
Tibaldi, Alexandra ;
Lee, Suwoong ;
Oh, Hyun Ju ;
Kim, Jong-Hyoung ;
Ko, Jaehoon ;
Lee, Dong-Wook ;
Cho, Hanchul ;
Lang, Philippe ;
Jang, Jaewon ;
Lee, Sohee ;
Bae, Jin-Hyuk ;
Kim, Hyeok .
POLYMERS, 2019, 11 (09)
[8]   Improved Output Voltage of a Nanogenerator with 3D Fabric [J].
Kim, Do-Kyung ;
Jeong, Jae Bum ;
Lim, Kyungmin ;
Ko, Jaehoon ;
Lang, Philippe ;
Choi, Muhan ;
Lee, Sohee ;
Bae, Jin-Hyuk ;
Kim, Hyeok .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (08) :4666-4670
[9]   Hysteretic behavior of contact force response in triboelectric nanogenerator [J].
Seol, Myeong-Lok ;
Han, Jin-Woo ;
Moon, Dong-Il ;
Meyyappan, M. .
NANO ENERGY, 2017, 32 :408-413
[10]   A Novel Thermoelectric Energy Harvester for Wireless Sensor Network Application [J].
Verma, Gourav ;
Sharma, Vidushi .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (05) :3530-3538