A Learning-Based Model to Evaluate Hospitalization Priority in COVID-19 Pandemics

被引:21
作者
Zheng, Yichao [1 ,4 ]
Zhu, Yinheng [1 ,4 ]
Ji, Mengqi [3 ,4 ]
Wang, Rongpin [2 ]
Liu, Xinfeng [2 ]
Zhang, Mudan [2 ]
Liu, Jun [5 ,6 ]
Zhang, Xiaochun [7 ]
Qin, Choo Hui [1 ,4 ]
Fang, Lu [1 ,4 ]
Ma, Shaohua [1 ,4 ]
机构
[1] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst TBSI, Shenzhen 518055, Peoples R China
[2] Guizhou Prov Peoples Hosp, Dept Radiol, Guiyang 550002, Peoples R China
[3] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Shenzhen Int Grad Sch SIGS, Shenzhen 518055, Peoples R China
[5] Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha 410011, Peoples R China
[6] Qual Control Ctr, Dept Radiol, Changsha 410011, Peoples R China
[7] Wuhan Univ, Zhongnan Hosp, Dept Radiol, Wuhan 43000, Peoples R China
来源
PATTERNS | 2020年 / 1卷 / 06期
基金
中国国家自然科学基金;
关键词
COVID-19; DSML 2: Proof-of-Concept: Data science output has been formulated; implemented; and tested for one domain/problem; hospitalization priority; learning-based model;
D O I
10.1016/j.patter.2020.100092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The emergence of the novel coronavirus disease 2019 (COVID-19) is placing an increasing burden on healthcare systems. Although the majority of infected patients experience non-severe symptoms and can be managed at home, some individuals develop severe symptoms and require hospital admission. Therefore, it is critical to efficiently assess the severity of COVID-19 and identify hospitalization priority with precision. In this respect, a four-variable assessment model, including lymphocyte, lactate dehydrogenase, C-reactive protein, and neutrophil, is established and validated using the XGBoost algorithm. This model is found to be effective in identifying severe COVID-19 cases on admission, with a sensitivity of 84.6%, a specificity of 84.6%, and an accuracy of 100% to predict the disease progression toward rapid deterioration. It also suggests that a computation-derived formula of clinical measures is practically applicable for healthcare administrators to distribute hospitalization resources to the most needed in epidemics and pandemics.
引用
收藏
页数:9
相关论文
共 32 条
[21]   Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China [J].
Wang, Dawei ;
Hu, Bo ;
Hu, Chang ;
Zhu, Fangfang ;
Liu, Xing ;
Zhang, Jing ;
Wang, Binbin ;
Xiang, Hui ;
Cheng, Zhenshun ;
Xiong, Yong ;
Zhao, Yan ;
Li, Yirong ;
Wang, Xinghuan ;
Peng, Zhiyong .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (11) :1061-1069
[22]  
Wang Z, 2020, DEV VALIDATION DIAGN, DOI DOI 10.1101/2020.04.03.20052068
[23]   Factors associated with COVID-19-related death using OpenSAFELY [J].
Williamson, Elizabeth J. ;
Walker, Alex J. ;
Bhaskaran, Krishnan ;
Bacon, Seb ;
Bates, Chris ;
Morton, Caroline E. ;
Curtis, Helen J. ;
Mehrkar, Amir ;
Evans, David ;
Inglesby, Peter ;
Cockburn, Jonathan ;
McDonald, Helen, I ;
MacKenna, Brian ;
Tomlinson, Laurie ;
Douglas, Ian J. ;
Rentsch, Christopher T. ;
Mathur, Rohini ;
Wong, Angel Y. S. ;
Grieve, Richard ;
Harrison, David ;
Forbes, Harriet ;
Schultze, Anna ;
Croker, Richard ;
Parry, John ;
Hester, Frank ;
Harper, Sam ;
Perera, Rafael ;
Evans, Stephen J. W. ;
Smeeth, Liam ;
Ben Goldacre .
NATURE, 2020, 584 (7821) :430-+
[24]   A new coronavirus associated with human respiratory disease in China [J].
Wu, Fan ;
Zhao, Su ;
Yu, Bin ;
Chen, Yan-Mei ;
Wang, Wen ;
Song, Zhi-Gang ;
Hu, Yi ;
Tao, Zhao-Wu ;
Tian, Jun-Hua ;
Pei, Yuan-Yuan ;
Yuan, Ming-Li ;
Zhang, Yu-Ling ;
Dai, Fa-Hui ;
Liu, Yi ;
Wang, Qi-Min ;
Zheng, Jiao-Jiao ;
Xu, Lin ;
Holmes, Edward C. ;
Zhang, Yong-Zhen .
NATURE, 2020, 579 (7798) :265-+
[25]  
Wu J., 2020, RAPID ACCURATE IDENT, DOI 10.1101/2020.04.02.20051136
[26]   Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal [J].
Wynants, Laure ;
Van Calster, Ben ;
Collins, Gary S. ;
Riley, Richard D. ;
Heinze, Georg ;
Schuit, Ewoud ;
Albu, Elena ;
Arshi, Banafsheh ;
Bellou, Vanesa ;
Bonten, Marc M. J. ;
Dahly, Darren L. ;
Damen, Johanna A. ;
Debray, Thomas P. A. ;
de Jong, Valentijn M. T. ;
De Vos, Maarten ;
Dhiman, Paula ;
Ensor, Joie ;
Gao, Shan ;
Haller, Maria C. ;
Harhay, Michael O. ;
Henckaerts, Liesbet ;
Heus, Pauline ;
Hoogland, Jeroen ;
Hudda, Mohammed ;
Jenniskens, Kevin ;
Kammer, Michael ;
Kreuzberger, Nina ;
Lohmann, Anna ;
Levis, Brooke ;
Luijken, Kim ;
Ma, Jie ;
Martin, Glen P. ;
McLernon, David J. ;
Andaur Navarro, Constanza L. ;
Reitsma, Johannes B. ;
Sergeant, Jamie C. ;
Shi, Chunhu ;
Skoetz, Nicole ;
Smits, Luc J. M. ;
Snell, Kym I. E. ;
Sperrin, Matthew ;
Spijker, Rene ;
Steyerberg, Ewout W. ;
Takada, Toshihiko ;
Tzoulaki, Ioanna ;
van Kuijk, Sander M. J. ;
van Bussel, Bas C. T. ;
van der Horst, Iwan C. C. ;
Reeve, Kelly ;
van Royen, Florien S. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[27]   Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing [J].
Xie, Xingzhi ;
Zhong, Zheng ;
Zhao, Wei ;
Zheng, Chao ;
Wang, Fei ;
Liu, Jun .
RADIOLOGY, 2020, 296 (02) :E41-E45
[28]   An interpretable mortality prediction model for COVID-19 patients [J].
Yan, Li ;
Zhang, Hai-Tao ;
Goncalves, Jorge ;
Xiao, Yang ;
Wang, Maolin ;
Guo, Yuqi ;
Sun, Chuan ;
Tang, Xiuchuan ;
Jing, Liang ;
Zhang, Mingyang ;
Huang, Xiang ;
Xiao, Ying ;
Cao, Haosen ;
Chen, Yanyan ;
Ren, Tongxin ;
Wang, Fang ;
Xiao, Yaru ;
Huang, Sufang ;
Tan, Xi ;
Huang, Niannian ;
Jiao, Bo ;
Cheng, Cheng ;
Zhang, Yong ;
Luo, Ailin ;
Mombaerts, Laurent ;
Jin, Junyang ;
Cao, Zhiguo ;
Li, Shusheng ;
Xu, Hui ;
Yuan, Ye .
NATURE MACHINE INTELLIGENCE, 2020, 2 (05) :283-+
[29]   COVID-19: a new challenge for human beings [J].
Yang, Penghui ;
Wang, Xiliang .
CELLULAR & MOLECULAR IMMUNOLOGY, 2020, 17 (05) :555-557
[30]   Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China [J].
Yuan, Mingli ;
Yin, Wen ;
Tao, Zhaowu ;
Tan, Weijun ;
Hu, Yi .
PLOS ONE, 2020, 15 (03)