Frustrated Antiferromagnets with Entanglement Renormalization: Ground State of the Spin-1/2 Heisenberg Model on a Kagome Lattice

被引:174
作者
Evenbly, G. [1 ]
Vidal, G. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
Antiferromagnets - Best approximations - Heisenberg models - Infinite lattices - Kagome lattice - Periodic boundary conditions - Renormalization - Valence bond crystals;
D O I
10.1103/PhysRevLett.104.187203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement renormalization techniques are applied to numerically investigate the ground state of the spin- 1/2 Heisenberg model on a kagome lattice. Lattices of N = {36, 144, infinity} sites with periodic boundary conditions are considered. For the infinite lattice, the best approximation to the ground state is found to be a valence bond crystal with a 36-site unit cell, compatible with a previous proposal. Its energy per site, E = -0.432 21, is an exact upper bound and is lower than the energy of any previous (gapped or algebraic) spin liquid candidate for the ground state.
引用
收藏
页数:4
相关论文
共 26 条
  • [1] Low-energy singlets in the Heisenberg antiferromagnet on the kagome lattice
    Budnik, R
    Auerbach, A
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (18) : 187205 - 1
  • [2] Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model
    Cincio, Lukasz
    Dziarmaga, Jacek
    Rams, Marek M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [3] Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms
    Evenbly, G.
    Vidal, G.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12
  • [4] Entanglement Renormalization in Two Spatial Dimensions
    Evenbly, G.
    Vidal, G.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (18)
  • [5] Algorithms for entanglement renormalization
    Evenbly, G.
    Vidal, G.
    [J]. PHYSICAL REVIEW B, 2009, 79 (14)
  • [6] EVENBLY G, PHYS REV B IN PRESS, P3201
  • [7] Dirac structure, RVB, and Goldstone modes in the kagome antiferromagnet
    Hastings, MB
    [J]. PHYSICAL REVIEW B, 2001, 63 (01)
  • [8] Algebraic spin liquid as the mother of many competing orders
    Hermele, M
    Senthil, T
    Fisher, MPA
    [J]. PHYSICAL REVIEW B, 2005, 72 (10)
  • [9] Properties of an algebraic spin liquid on the kagome lattice
    Hermele, Michael
    Ran, Ying
    Lee, Patrick A.
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW B, 2008, 77 (22)
  • [10] Density matrix renormalization group numerical study of the kagome antiferromagnet
    Jiang, H. C.
    Weng, Z. Y.
    Sheng, D. N.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (11)