Rigid curves in complete intersection Calabi-Yau threefolds

被引:14
作者
Kley, HP [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
关键词
Calabi-Yau threefolds; Hilbert schemes; K3; surfaces;
D O I
10.1023/A:1002012414149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Working over the complex numbers, we study curves lying in a complete intersection K3 surface contained in a (nodal) complete intersection Calabi-Yau threefold. Under certain generality assumptions, we show that the linear system of curves in the surface is a connected componend of the the Hilbert scheme of the threefold. In the case of genus one, we deduce the existence of infinitesimally rigid embeddings of elliptic curves of arbitrary degree in the general complete intersection Calabi-Yau threefold.
引用
收藏
页码:185 / 208
页数:24
相关论文
共 23 条
  • [1] Altman A, 1970, LECT NOTES MATH
  • [2] ATIYAH MF, 1957, T AM MATH SOC, V86, P181
  • [3] HOLOMORPHIC ANOMALIES IN TOPOLOGICAL FIELD-THEORIES
    BERSHADSKY, M
    CECOTTI, S
    OOGURI, H
    VAFA, C
    [J]. NUCLEAR PHYSICS B, 1993, 405 (2-3) : 279 - 304
  • [4] A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY
    CANDELAS, P
    DELAOSSA, XC
    GREEN, PS
    PARKES, L
    [J]. NUCLEAR PHYSICS B, 1991, 359 (01) : 21 - 74
  • [5] CLEMENS H, 1983, PUBL MATH-PARIS, P231
  • [6] CLEMENS H, 1987, P INT C MATH 1986 BE, P634
  • [7] EKEDAHL T, ALGGEOM9710010
  • [8] Bott's formula and enumerative geometry
    Ellingsrud, G
    Stromme, SA
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) : 175 - 193
  • [9] Fulton W., 1984, ERGEB MATH GRENZGEB, V2
  • [10] Intersection theory on (M)over-bar(1,4) and elliptic Gromov-Witten invariants
    Getzler, E
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (04) : 973 - 998