On finite edge-primitive and edge-quasiprimitive graphs

被引:18
作者
Giudici, Michael [1 ]
Li, Cai Heng [1 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Edge-primitive graphs; Edge-quasiprimitive graphs; MAXIMAL-SUBGROUPS; HOMOGENEOUS FACTORIZATIONS; AUTOMORPHISM-GROUPS; PERMUTATION-GROUPS;
D O I
10.1016/j.jctb.2009.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many famous graphs are edge-primitive, for example, the Heawood graph, the Tutte-Coxeter graph and the Higman-Sims graph. In this paper we systematically analyse edge-primitive and edge-quasiprimitive graphs via the O'Nan-Scott Theorem to determine the possible edge and vertex actions of such graphs. Many interesting examples are given and we also determine all G-edge-primitive graphs for G an almost simple group with socle PSL(2, q). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 298
页数:24
相关论文
共 18 条
[12]  
KOVACS LG, 1989, P LOND MATH SOC, V58, P306
[13]   On partitioning the orbitals of a transitive permutation group [J].
Li, CH ;
Praeger, CE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (02) :637-653
[14]   A CLASSIFICATION OF THE MAXIMAL-SUBGROUPS OF THE FINITE ALTERNATING AND SYMMETRICAL-GROUPS [J].
LIEBECK, MW ;
PRAEGER, CE ;
SAXL, J .
JOURNAL OF ALGEBRA, 1987, 111 (02) :365-383
[15]  
Praeger C.E., 1997, Surveys in Combinatorics. Proceedings of the 16th British Combinatorial Conference, London, UK, V241, P65
[16]  
SCOTT LL, 1980, P SYMP PURE MATH, V37, P319
[17]   On classifying finite edge colored graphs with two transitive automorphism groups [J].
Sibley, TQ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (01) :121-138
[18]  
Weiss R. M., 1973, Journal of Combinatorial Theory, Series B, V15, P269, DOI 10.1016/0095-8956(73)90041-5