On finite edge-primitive and edge-quasiprimitive graphs

被引:18
作者
Giudici, Michael [1 ]
Li, Cai Heng [1 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Edge-primitive graphs; Edge-quasiprimitive graphs; MAXIMAL-SUBGROUPS; HOMOGENEOUS FACTORIZATIONS; AUTOMORPHISM-GROUPS; PERMUTATION-GROUPS;
D O I
10.1016/j.jctb.2009.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many famous graphs are edge-primitive, for example, the Heawood graph, the Tutte-Coxeter graph and the Higman-Sims graph. In this paper we systematically analyse edge-primitive and edge-quasiprimitive graphs via the O'Nan-Scott Theorem to determine the possible edge and vertex actions of such graphs. Many interesting examples are given and we also determine all G-edge-primitive graphs for G an almost simple group with socle PSL(2, q). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 298
页数:24
相关论文
共 18 条
  • [1] BADDELEY RW, 1993, P LOND MATH SOC, V67, P547
  • [2] Factorizations of primitive permutation groups
    Baumeister, B
    [J]. JOURNAL OF ALGEBRA, 1997, 194 (02) : 631 - 653
  • [3] Conway J. H., 1985, ATLAS of Finite Groups
  • [4] Dickson Leonard Eugene, 1958, Linear Groups: With an Exposition of the Galois Field Theory
  • [5] Dixon J. D., 1996, Graduate Text in Mathematics, V163
  • [6] Homogeneous factorisations of graphs and digraphs
    Giudici, M
    Li, CH
    Potocnik, P
    Praeger, CE
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (01) : 11 - 37
  • [7] Giudici M., MATHGR0703685
  • [8] Homogeneous factorisations of complete multipartite graphs
    Giudici, Michael
    Li, Cai Heng
    Potocnik, Primoz
    Praeger, Cheryl E.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (3-5) : 415 - 431
  • [9] Giudici M, 2008, APPLICATIONS OF GROUP THEORY TO COMBINATORICS, P27