On finite edge-primitive and edge-quasiprimitive graphs

被引:18
作者
Giudici, Michael [1 ]
Li, Cai Heng [1 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Edge-primitive graphs; Edge-quasiprimitive graphs; MAXIMAL-SUBGROUPS; HOMOGENEOUS FACTORIZATIONS; AUTOMORPHISM-GROUPS; PERMUTATION-GROUPS;
D O I
10.1016/j.jctb.2009.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many famous graphs are edge-primitive, for example, the Heawood graph, the Tutte-Coxeter graph and the Higman-Sims graph. In this paper we systematically analyse edge-primitive and edge-quasiprimitive graphs via the O'Nan-Scott Theorem to determine the possible edge and vertex actions of such graphs. Many interesting examples are given and we also determine all G-edge-primitive graphs for G an almost simple group with socle PSL(2, q). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:275 / 298
页数:24
相关论文
共 18 条
[1]  
BADDELEY RW, 1993, P LOND MATH SOC, V67, P547
[2]   Factorizations of primitive permutation groups [J].
Baumeister, B .
JOURNAL OF ALGEBRA, 1997, 194 (02) :631-653
[3]  
Conway J. H., 1985, ATLAS of Finite Groups
[4]  
Dickson Leonard Eugene, 1958, Linear Groups: With an Exposition of the Galois Field Theory
[5]  
Dixon J. D., 1996, Graduate Text in Mathematics, V163
[6]   Homogeneous factorisations of graphs and digraphs [J].
Giudici, M ;
Li, CH ;
Potocnik, P ;
Praeger, CE .
EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (01) :11-37
[7]  
Giudici M., MATHGR0703685
[8]   Homogeneous factorisations of complete multipartite graphs [J].
Giudici, Michael ;
Li, Cai Heng ;
Potocnik, Primoz ;
Praeger, Cheryl E. .
DISCRETE MATHEMATICS, 2007, 307 (3-5) :415-431
[9]  
Giudici M, 2008, APPLICATIONS OF GROUP THEORY TO COMBINATORICS, P27