From Duels to Battlefields: Computing Equilibria of Blotto and Other Games

被引:20
作者
Ahmadinejad, AmirMahdi [1 ]
Dehghani, Sina [2 ]
Hajiaghayi, MohammadTaghi [2 ]
Loder, Brendan [3 ]
Mahini, Hamid [4 ]
Seddighin, Saeed [2 ]
机构
[1] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Microsoft Res, Cambridge, MA 02142 USA
[4] Univ Tehran, Sch Elect & Comp Engn, Tehran, Iran
基金
美国国家科学基金会;
关键词
algorithmic game theory; Nash equilibrium; Colonel Blotto; zero-sum games; COLONEL-BLOTTO; COMPLEXITY; BOREL; PLAY;
D O I
10.1287/moor.2018.0971
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In the well-studied Colonel Blotto game, players must divide a pool of troops among a set of battlefields with the goal of winning a majority. Despite the importance of this game, only a few solutions for special variants of the problem are known. We provide a general technique for computing equilibria of the Colonel Blotto game. Our approach applies to variations of the Colonel Blotto game as well, including an infinite-strategy variant called the General Lotto game. We also apply our technique beyond Colonel Blotto games to create the first polynomial-time algorithms for computing equilibria for a variety of other zero-sum games. Our approach is to reformulate each zero-sum game into a bilinear form, then reduce equilibrium computation to linear optimization over a game-specific polytope.
引用
收藏
页码:1304 / 1325
页数:22
相关论文
共 49 条
[1]  
Itai,, 2008, LECT NOTES COMPUT SC, V5385, P675, DOI 10.1007/978-3-540-92185-1_73
[2]  
AZAR Y, 2003, P 35 ANN ACM S THEOR, P383, DOI DOI 10.1145/780542.780599
[3]   COMPETITIVE OPTIMALITY OF LOGARITHMIC INVESTMENT [J].
BELL, RM ;
COVER, TM .
MATHEMATICS OF OPERATIONS RESEARCH, 1980, 5 (02) :161-166
[4]   ON COLONEL BLOTTO AND ANALOGOUS GAMES [J].
BELLMAN, R .
SIAM REVIEW, 1969, 11 (01) :66-&
[5]  
Blackett D. W., 1954, Naval Res. Logistic Q, V1, P55, DOI [10.1002/nav.3800010109, DOI 10.1002/NAV.3800010109]
[6]  
Blackett D. W., 1958, Naval Research Logistics Quarterly, V5, P107, DOI [10.1002/nav.3800050203., DOI 10.1002/NAV.3800050203]
[7]  
Borel E., 1921, ECONOMETRICA
[8]   THE THEORY OF PLAY AND INTEGRAL EQUATIONS WITH SKEW SYMMETRIC KERNELS [J].
Borel, Emile .
ECONOMETRICA, 1953, 21 (01) :97-100
[9]   Ranking games [J].
Brandt, Felix ;
Fischer, Felix ;
Harrenstein, Paul ;
Shoham, Yoav .
ARTIFICIAL INTELLIGENCE, 2009, 173 (02) :221-239