A generalization of Coleman's p-adic integration theory

被引:20
作者
Besser, A [1 ]
机构
[1] SFB Geometr Strukturen Math 478, D-48149 Munster, Germany
关键词
D O I
10.1007/s002220000093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We associate to a scheme X smooth over a p-adic ring a kind of cohomology group H-fp(i)(X, j). For proper X this cohomology has Poincare duality hence Gysin maps and cycle class maps which are reasonably explicit. For zero-cycles we show that the cycle class map is given by Coleman integration. The cohomology theory H-fp is therefore interpreted as giving a generalization of Coleman's theory. We find an embedding H-syn(2i) (X, i) --> H-fp(2i)(X, i) where H-syn is (rigid) syntomic cohomology. Our main result is an explicit description of the syntomic Abel-Jacobi map in terms of generalized Coleman integration.
引用
收藏
页码:397 / 434
页数:38
相关论文
共 25 条
[1]  
BERTHELOT DP, 1971, LECT NOTES MATH, V225, P25647
[2]   Poincare duality and Kunneth formula for rigid cohomology [J].
Berthelot, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (05) :493-498
[3]  
Berthelot P, 1997, INVENT MATH, V128, P329, DOI 10.1007/s002220050143
[4]  
BERTHELOT P, 1996, 9603 U RENN
[5]  
BESSER A, IN PRESS ISRAEL J MA
[6]  
BLOCH S, 1990, PROG MATH, V86, P333
[7]  
BOSCH S, 1984, NONARCHIMEDEN ANAL
[8]  
Bourbaki N., 1972, GROUPES ALGEBRES LIE
[9]   On purity of crystalline cohomology [J].
Chiarellotto, B ;
Le Stum, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (08) :961-963
[10]   TORSION POINTS ON CURVES AND P-ADIC ABELIAN-INTEGRALS [J].
COLEMAN, RF .
ANNALS OF MATHEMATICS, 1985, 121 (01) :111-168