Nehari manifold and existence of positive solutions to a class of quasilinear problems

被引:61
作者
Alves, CO [1 ]
El Hamidi, A
机构
[1] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, PB, Brazil
[2] Univ Rochelle, Lab Math & Applicat, F-17042 La Rochelle, France
关键词
variational method; quasilinear problem; critical Sobolev exponent;
D O I
10.1016/j.na.2004.09.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, existence and multiplicity results to the following nonlinear elliptic equation: -Delta(p)u = lambda\u\(q-2)u + \u\(p*-2)u, u > 0 in Omega subset of R-N, together with mixed Dirichlet-Neumann or Neumann boundary conditions, are established. Here, Delta(p)u denotes the p-Laplacian operator, 1 < q < p < N, p* = Np/(N - p) and lambda is a positive real parameter. The study is based on the extraction of Palais-Smale sequences in the Nehari manifold. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:611 / 624
页数:14
相关论文
共 19 条
[1]  
Adimurthi, 1993, J FUNCT ANAL, V113, P318
[2]  
ALVES CO, 1997, ELECT J DIFFERENTIAL, V13, P1
[3]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[4]  
AVLES CO, 1996, THESIS UNB
[5]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[6]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[7]   The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 193 (02) :481-499
[8]  
CHERRIER P, 1984, B SCI MATH, V108, P225
[9]   Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions [J].
Colorado, E ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) :468-507
[10]  
DEMEDEIROS ES, 2001, THESIS UNICAMP