A holographic model for the fractional quantum Hall effect

被引:24
|
作者
Lippert, Matthew [1 ]
Meyer, Rene [2 ]
Taliotis, Anastasios [3 ,4 ]
机构
[1] Univ Amsterdam, Inst Theoret Phys, NL-1090 GL Amsterdam, Netherlands
[2] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778568, Japan
[3] Vrije Univ Brussel, B-1050 Brussels, Belgium
[4] Int Solvay Inst, B-1050 Brussels, Belgium
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2015年 / 01期
关键词
Gauge-gravity correspondence; Holography and condensed matter physics (AdS/CMT); DUALITY; CHARGE; SYSTEM;
D O I
10.1007/JHEP01(2015)023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a 0 (2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2, Z)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2, Z) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.
引用
收藏
页码:1 / 81
页数:81
相关论文
共 50 条
  • [41] Fractional Mutual Statistics on Integer Quantum Hall Edges
    Lee, June-Young M.
    Han, Cheolhee
    Sim, H. -S.
    PHYSICAL REVIEW LETTERS, 2020, 125 (19)
  • [42] Observation of the scaling dimension of fractional quantum Hall anyons
    Veillon, A.
    Piquard, C.
    Glidic, P.
    Sato, Y.
    Aassime, A.
    Cavanna, A.
    Jin, Y.
    Gennser, U.
    Anthore, A.
    Pierre, F.
    NATURE, 2024, 632 (8025) : 517 - +
  • [43] Observation of neutral modes in the fractional quantum Hall regime
    Bid, Aveek
    Ofek, N.
    Inoue, H.
    Heiblum, M.
    Kane, C. L.
    Umansky, V.
    Mahalu, D.
    NATURE, 2010, 466 (7306) : 585 - 590
  • [44] Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy
    Fujita, Mitsutoshi
    Li, Wei
    Ryu, Shinsei
    Takayanagi, Tadashi
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):
  • [45] Separately contacted edge states at high imbalance in the integer and fractional quantum Hall effect regime
    Deviatov, E. V.
    Lorke, A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (02): : 366 - 377
  • [46] Multiterminal open quantum dot circuit operating in the fractional quantum Hall regime
    Parafilo, A. V.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [47] Quantum quenches in a holographic Kondo model
    Erdmenger, Johanna
    Flory, Mario
    Newrzella, Max-Niklas
    Strydom, Migael
    Wu, Jackson M. S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [48] Optical Hall Effect in the Integer Quantum Hall Regime
    Ikebe, Y.
    Morimoto, T.
    Masutomi, R.
    Okamoto, T.
    Aoki, H.
    Shimano, R.
    PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [49] A holographic model for quantum critical responses
    Robert C. Myers
    Todd Sierens
    William Witczak-Krempa
    Journal of High Energy Physics, 2016
  • [50] Quantum quenches in a holographic Kondo model
    Johanna Erdmenger
    Mario Flory
    Max-Niklas Newrzella
    Migael Strydom
    Jackson M. S. Wu
    Journal of High Energy Physics, 2017