FREE: Feature Refinement for Generalized Zero-Shot Learning

被引:181
作者
Chen, Shiming [1 ]
Wang, Wenjie [1 ]
Xia, Beihao [1 ]
Peng, Qinmu [1 ]
You, Xinge [1 ]
Zheng, Feng [2 ]
Shao, Ling [3 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Wuhan, Peoples R China
[2] Southern Univ Sci & Technol SUSTech, Shenzhen, Peoples R China
[3] Incept Inst Artificial Intelligence IIAI, Abu Dhabi, U Arab Emirates
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021) | 2021年
关键词
NETWORK;
D O I
10.1109/ICCV48922.2021.00019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gap and seen-unseen bias. However, most existing methods directly use feature extraction models trained on ImageNet alone, ignoring the cross-dataset bias between ImageNet and GZSL benchmarks. Such a bias inevitably results in poor-quality visual features for GZSL tasks, which potentially limits the recognition performance on both seen and unseen classes. In this paper, we propose a simple yet effective GZSL method, termed feature refinement for generalized zero-shot learning (FREE), to tackle the above problem. FREE employs a feature refinement (FR) module that incorporates semantic -> visual mapping into a unified generative model to refine the visual features of seen and unseen class samples. Furthermore, we propose a self-adaptive margin center loss (SAMC-loss) that cooperates with a semantic cycle-consistency loss to guide FR to learn class- and semantically-relevant representations, and concatenate the features in FR to extract the fully refined features. Extensive experiments on five benchmark datasets demonstrate the significant performance gain of FREE over its baseline and current state-of-the-art methods. The code is available at https://github.com/shiming-chen/FREE.
引用
收藏
页码:122 / 131
页数:10
相关论文
共 67 条
[1]   Label-Embedding for Image Classification [J].
Akata, Zeynep ;
Perronnin, Florent ;
Harchaoui, Zaid ;
Schmid, Cordelia .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (07) :1425-1438
[2]  
Akata Z, 2015, PROC CVPR IEEE, P2927, DOI 10.1109/CVPR.2015.7298911
[3]   Adaptive Confidence Smoothing for Generalized Zero-Shot Learning [J].
Atzmon, Yuval ;
Chechik, Gal .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11663-11672
[4]   Generating Visual Representations for Zero-Shot Classification [J].
Bucher, Maxime ;
Herbin, Stephane ;
Jurie, Frederic .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :2666-2673
[5]   Predicting Visual Exemplars of Unseen Classes for Zero-Shot Learning [J].
Changpinyo, Soravit ;
Chao, Wei-Lun ;
Sha, Fei .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :3496-3505
[6]   Synthesized Classifiers for Zero-Shot Learning [J].
Changpinyo, Soravit ;
Chao, Wei-Lun ;
Gong, Boqing ;
Sha, Fei .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5327-5336
[7]   Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Liu, Wei ;
Chang, Shih-Fu .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1043-1052
[8]  
Chen X., 2020, ECCV
[9]   Fine-Grained Generalized Zero-Shot Learning via Dense Attribute-Based Attention [J].
Dat Huynh ;
Elhamifar, Ehsan .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :4482-4492
[10]   Marginalized Latent Semantic Encoder for Zero-Shot Learning [J].
Ding, Zhengming ;
Liu, Hongfu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :6184-6192