Recombinant maize protoporphyrinogen IX oxidase expressed in Escherichia coli forms complexes with GroEL and DnaK chaperones

被引:27
作者
de Marco, A [1 ]
Volrath, S
Bruyere, T
Law, M
Fonné-Pfister, R
机构
[1] Novartis Crop Protect AG, LD Biochem Unit, CH-4002 Basel, Switzerland
[2] Novartis Crop Protect Inc, Biotechnol & Genom Ctr, Res Triangle Pk, NC 27709 USA
关键词
D O I
10.1006/prep.2000.1274
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The clone corresponding to maize plastidic proto-porphyrinogen IX oxidase (PPO) has been isolated by functional complementation and inserted into a pET16b vector for expression in Escherichia coli. Recombinant PPO was purified by standard affinity chromatography using a metal chelating resin, Two contaminants copurified with recombinant PPO and were identified as GroEL and DnaK, Since chaperone binding to hydrophobic regions of the protein is regulated by ATP availability, an ATP washing step was introduced prior to elution of the recombinant protein from an affinity column. This washing step selectively removed both chaperones and allowed the recovery of pure PPO, Coexpression of PPO and GroELS resulted in a sixfold increase of soluble PPO yield, suggesting that bacterial chaperones could be limiting during the folding of the heterologous protein. However, a portion of PPO was still found in the insoluble fraction. Buffer containing the GroEL and DnaK enabled resuspension of PPO from the insoluble fraction but failed to enhance refolding of the denaturated protein. Attempts to increase the amount of soluble PPO using a thioredoxin-PPO fusion protein were not successful. Initial characterization of the recombinant PPO found that it possessed a high V-max, an elevated affinity for substrate, and an elevated sensitivity to PPO inhibitor herbicides compared to previous reports. (C) 2000 Academic Press.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 35 条
[1]  
ANDERSON RJ, 1994, ACS SYM SER, V559, P18
[2]   Kinetics of protoporphyrinogen oxidase inhibition by diphenyleneiodonium derivatives [J].
Arnould, S ;
Berthon, JL ;
Hubert, C ;
Dias, M ;
Cibert, C ;
Mornet, R ;
Camadro, JM .
BIOCHEMISTRY, 1997, 36 (33) :10178-10184
[3]   A NOVEL STRATEGY FOR PRODUCTION OF A HIGHLY EXPRESSED RECOMBINANT PROTEIN IN AN ACTIVE FORM [J].
BLACKWELL, JR ;
HORGAN, R .
FEBS LETTERS, 1991, 295 (1-3) :10-12
[4]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[5]   KINETIC-STUDIES ON PROTOPORPHYRINOGEN OXIDASE INHIBITION BY DIPHENYL ETHER HERBICIDES [J].
CAMADRO, JM ;
MATRINGE, M ;
SCALLA, R ;
LABBE, P .
BIOCHEMICAL JOURNAL, 1991, 277 :17-21
[6]  
CAMADRO JM, 1993, TARGET ASSAYS MODERN, P29
[7]   Protein folding in the cell: Competing models of chaperonin function [J].
Ellis, RJ ;
Hartl, FU .
FASEB JOURNAL, 1996, 10 (01) :20-26
[8]   ABUNDANT BACTERIAL EXPRESSION AND RECONSTITUTION OF AN INTRINSIC MEMBRANE-TRANSPORT PROTEIN FROM BOVINE MITOCHONDRIA [J].
FIERMONTE, G ;
WALKER, JE ;
PALMIERI, F .
BIOCHEMICAL JOURNAL, 1993, 294 :293-299
[9]   Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network [J].
Goloubinoff, P ;
Mogk, A ;
Ben Zvi, AP ;
Tomoyasu, T ;
Bukau, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13732-13737
[10]   Strategies for optimizing heterologous protein expression in Escherichia coli [J].
Hannig, G ;
Makrides, SC .
TRENDS IN BIOTECHNOLOGY, 1998, 16 (02) :54-60