A Deep Learning based Hand Gesture Recognition on a Low-power Microcontroller using IMU Sensors

被引:3
|
作者
Lauss, Daniel [1 ]
Eibensteiner, Florian [1 ]
Petz, Phillip [1 ]
机构
[1] UAS Upper Austria, Emebdded Syst Lab, Hagenberg, Austria
关键词
HGR; DNN; LSTM; microcontroller; IMU;
D O I
10.1109/ICMLA55696.2022.00122
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we demonstrate an inertial measurement unit (IMU) based hand gesture recognition (HGR) on a low-power microcontroller (STM32L476JGY). The focus of this work is to build a reliable hardware prototype by using deep neural networks (DNN) deployed on a resource limited device. To train the DNNs, a dataset was recorded which contains accelerometer and gyroscope readings from three IMUs mounted on the fingertips. With this dataset, various neural networks (NN) were trained and analyzed. The best NN, in terms of accuracy, memory usage and latency, was then selected and ported to the microcontroller. Finally, a runtime analysis of the model has been performed on the controller. The analysis showed that a LSTM is best suited for the detection of hand gestures. The selected model achieves an accuracy of 93% and only takes up around 40 KiB of memory. In addition, the model has a throughput time of only 3.52 ms, which means that the prototype can be used in real time.
引用
收藏
页码:733 / 736
页数:4
相关论文
共 50 条
  • [31] Hand Pose Estimation Based on Deep Learning Depth Map for Hand Gesture Recognition
    Otberdout, Naima
    Ballihi, Lahoucine
    Aboutajdine, Driss
    2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2017,
  • [32] Improved Deep Representation Learning for Human Activity Recognition using IMU Sensors
    Lyons, Niall
    Santra, Avik
    Pandey, Ashutosh
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 326 - 332
  • [33] Vision-based hand gesture recognition using deep learning for the interpretation of sign language
    Sharma, Sakshi
    Singh, Sukhwinder
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182 (182)
  • [34] Integrated Deep Learning Structures for Hand Gesture Recognition
    Korkmaz, Senol
    13TH INTERNATIONAL CONFERENCE ON THEORY AND APPLICATION OF FUZZY SYSTEMS AND SOFT COMPUTING - ICAFS-2018, 2019, 896 : 129 - 136
  • [35] Small Deep Learning Models For Hand Gesture Recognition
    Mohammed, Adam Ahmed Qaid
    Lv, Jiancheng
    Islam, M. D. Sajjatul
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 1429 - 1435
  • [36] Deep Learning for Hand Gesture Recognition on Skeletal Data
    Devineau, Guillaume
    Xi, Wang
    Moutarde, Fabien
    Yang, Jie
    PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, : 106 - 113
  • [37] A Deep Learning Approach for Hybrid Hand Gesture Recognition
    Alonso, Diego G.
    Teyseyre, Alfredo
    Berdun, Luis
    Schiaffino, Silvia
    ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 87 - 99
  • [38] Hand Gesture Recognition Using FSK Radar Sensors
    Yang, Kimoon
    Kim, Minji
    Jung, Yunho
    Lee, Seongjoo
    SENSORS, 2024, 24 (02)
  • [39] Exploiting domain transformation and deep learning for hand gesture recognition using a low-cost dataglove
    Md. Ahasan Atick Faisal
    Farhan Fuad Abir
    Mosabber Uddin Ahmed
    Md Atiqur Rahman Ahad
    Scientific Reports, 12 (1)
  • [40] Soft Optoelectronic Sensors with Deep Learning for Gesture Recognition
    Zhao, Lei
    Wu, Bei
    Niu, Yao
    Zhu, Shengke
    Chen, Ye
    Chen, Huanyang
    Chen, Jin-hui
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (11)