An object-based hierarchical classification method for nature reserve land cover classification

被引:0
作者
Fu Zhuo [1 ]
Liu Xiaolong [2 ]
Xiao Rulin [1 ]
Liu Xiaoman [1 ]
Wen Ruihong [1 ]
Xu Ru [2 ]
机构
[1] Minist Environm Protect, Satellite Environm Ctr, Beijing, Peoples R China
[2] Yunnan Normal Univ, Coll Tourism & Geog Sci, Kunming, Yunnan, Peoples R China
来源
2018 2ND INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2018) | 2018年 / 153卷
关键词
IMAGE-ANALYSIS; SPECTRAL CASI; LIDAR DATA; VEGETATION; FUSION;
D O I
10.1088/1755-1315/153/6/062026
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents an object-based hierarchical classification method for nature reserve land cover classification using hyperspectral and multi-spectral data. The method firstly extracts several indices to identify non-vegetation land covers that are distinguishable with these indices, and then classify vegetation into grass land and crop. The classified land covers were finally assigned to image objects. In this study we obtained an overall classification accuracy of 95.05, with a Kappa of 0.89, which indicates the potential of this method in nature reserve change monitoring and management.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest [J].
Anderson, Jeanne E. ;
Plourde, Lucie C. ;
Martin, Mary E. ;
Braswell, Bobby H. ;
Smith, Marie-Louise ;
Dubayah, Ralph O. ;
Hofton, Michelle A. ;
Blair, J. Bryan .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1856-1870
[2]   Geographic Object-Based Image Analysis - Towards a new paradigm [J].
Blaschke, Thomas ;
Hay, Geoffrey J. ;
Kelly, Maggi ;
Lang, Stefan ;
Hofmann, Peter ;
Addink, Elisabeth ;
Feitosa, Raul Queiroz ;
van der Meer, Freek ;
van der Werff, Harald ;
van Coillie, Frieke ;
Tiede, Dirk .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 :180-191
[3]   Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis [J].
Bork, Edward W. ;
Su, Jason G. .
REMOTE SENSING OF ENVIRONMENT, 2007, 111 (01) :11-24
[4]   Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas [J].
Dalponte, Michele ;
Bruzzone, Lorenzo ;
Gianelle, Damiano .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05) :1416-1427
[5]   Characterization of the horizontal structure of the tropical forest canopy using object-based LiDAR and multispectral image analysis [J].
Dupuy, Stephane ;
Laine, Gerard ;
Tassin, Jacques ;
Sarrailh, Jean-Michel .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 25 :76-86
[6]   Semi-Supervised Methods to Identify Individual Crowns of Lowland Tropical Canopy Species Using Imaging Spectroscopy and LiDAR [J].
Feret, Jean-Baptiste ;
Asner, Gregory P. .
REMOTE SENSING, 2012, 4 (08) :2457-2476
[7]   Representation for M. thibetana in Wuyishan Nature Reserve, China [J].
Gao, Shan ;
Chen, Bin ;
Yang, Zhifeng .
INTERNATIONAL CONFERENCE ON ECOLOGICAL INFORMATICS AND ECOSYSTEM CONSERVATION (ISEIS 2010), 2010, 2 :2005-2011
[8]  
Gavish Y, 2017, ISPRS J PHOTOGRAMMET, V136
[9]   Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data [J].
Geerling, G. W. ;
Labrador-Garcia, M. ;
Clevers, J. G. P. W. ;
Ragas, A. M. J. ;
Smits, A. J. M. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (19) :4263-4284
[10]   MAPPING RIVER FLOODPLAIN ECOTOPES BY SEGMENTATION OF SPECTRAL (CASI) AND STRUCTURAL (LiDAR) REMOTE SENSING DATA [J].
Geerling, G. W. ;
Vreeken-Buijs, M. J. ;
Jesse, P. ;
Ragas, A. M. J. ;
Smits, A. J. M. .
RIVER RESEARCH AND APPLICATIONS, 2009, 25 (07) :795-813