Biorefining waste into nanobiotechnologies revolutionize sustainable agriculture

被引:31
作者
Fu, Xiao [1 ,3 ]
Zheng, Ze [3 ]
Sha, Zhimin [4 ]
Cao, Hongliang [1 ]
Yuan, Qiaoxia [1 ]
Yu, Hongbo [3 ]
Li, Qiang [1 ,2 ]
机构
[1] Huazhong Agr Univ, Coll Engn, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Coll Hort & Forestry Sci, Wuhan 430070, Peoples R China
[3] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Key Lab Mol Biophys MOE, Wuhan 430074, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Agr & Biol, Shanghai 200240, Peoples R China
关键词
CONTROLLED-RELEASE; CARBON-FIBER; SOIL CARBON; LIGNIN NANOPARTICLES; ANTI-PHOTOLYSIS; SLOW-RELEASE; HIGH-YIELD; ENERGY; FRACTIONATION; GREEN;
D O I
10.1016/j.tibtech.2022.09.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Modern agriculture has evolved technological innovations to sustain crop productivity. Recent advances in biorefinery technology use crop residue as feedstock, but this raises carbon sequestration concerns as biorefining utilizes carbon that would otherwise be returned to the soil, thus causing a decline in crop productivity. Furthermore, biorefining generates abundant lignin waste that significantly impedes the efficiency of biorefineries. Valorizing lignin into advanced nanobiotechnologies for agriculture provides a unique opportunity to balance bioeconomy and soil carbon sequestration. Integration of agricultural practices such as utilization of agrochemicals, fertilizers, soil modifiers, and mulching with lignin nanobiotechnologies promotes crop productivity and also enables advanced manufacturing of high-value bioproducts from lignin. Lignin nanobiotechnologies thus represent state-of-the-art innovations to transform both the bioeconomy and sustainable agriculture.
引用
收藏
页码:1503 / 1518
页数:16
相关论文
共 114 条
[1]  
Abu-Omar MM, 2021, ENERG ENVIRON SCI, V14, P262, DOI [10.1039/d0ee02870c, 10.1039/D0EE02870C]
[2]  
Adisa IO, 2019, ENVIRON SCI-NANO, V6, P2002, DOI [10.1039/c9en00265k, 10.1039/C9EN00265K]
[3]   Can lignin be transformed into agrochemicals? Recent advances in the agricultural applications of lignin [J].
Ahmad, Umme Marium ;
Ji, Na ;
Li, Hanyang ;
Wu, Qiong ;
Song, Chunfeng ;
Liu, Qingling ;
Ma, Degang ;
Lu, Xuebin .
INDUSTRIAL CROPS AND PRODUCTS, 2021, 170
[4]   Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector [J].
Bahrulolum, Howra ;
Nooraei, Saghi ;
Javanshir, Nahid ;
Tarrahimofrad, Hossein ;
Mirbagheri, Vasighe Sadat ;
Easton, Andrew J. ;
Ahmadian, Gholamreza .
JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)
[5]   The global tree restoration potential [J].
Bastin, Jean-Francois ;
Finegold, Yelena ;
Garcia, Claude ;
Mollicone, Danilo ;
Rezende, Marcelo ;
Routh, Devin ;
Zohner, Constantin M. ;
Crowther, Thomas W. .
SCIENCE, 2019, 365 (6448) :76-+
[6]   Pesticide-Loaded Nanocarriers from Lignin Sulfonates-A Promising Tool for Sustainable Plant Protection [J].
Beckers, Sebastian ;
Peil, Stefan ;
Wurm, Frederik R. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (50) :18468-18475
[7]   The rhizosphere microbiome and plant health [J].
Berendsen, Roeland L. ;
Pieterse, Corne M. J. ;
Bakker, Peter A. H. M. .
TRENDS IN PLANT SCIENCE, 2012, 17 (08) :478-486
[8]   Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications [J].
Bhattacharya, Santanu ;
Samanta, Suman K. .
CHEMICAL REVIEWS, 2016, 116 (19) :11967-12028
[9]   Organic Amendments, Beneficial Microbes, and Soil Microbiota: Toward a Unified Framework for Disease Suppression [J].
Bonanomi, Giuliano ;
Lorito, Matteo ;
Vinale, Francesco ;
Woo, Sheridan L. .
ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 56, 2018, 56 :1-20
[10]   Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation [J].
Cai, Chenggu ;
Xu, Zhaoxian ;
Zhou, Huarong ;
Chen, Sitong ;
Jin, Mingjie .
SCIENCE ADVANCES, 2021, 7 (36)