Intracellular detection of singlet oxygen using fluorescent nanosensors

被引:22
作者
Nath, Peuli [1 ]
Hamadna, Sameer Sayel [1 ]
Karamchand, Leshern [2 ]
Foster, John [3 ]
Kopelman, Raoul [2 ]
Amar, Jacques G. [1 ]
Ray, Aniruddha [1 ]
机构
[1] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
[2] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Nucl Engn, Ann Arbor, MI 48109 USA
关键词
PLGA-BASED NANOPARTICLES; DRUG-DELIVERY; PHOTODYNAMIC THERAPY; SENSOR; PHOTOSENSITIZER; TRAFFICKING; GENERATION; DIFFUSION; LIFETIME; GREEN;
D O I
10.1039/d1an00456e
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Detection of singlet oxygen is of great importance for a range of therapeutic applications, particularly photodynamic therapy, plasma therapy and also during photo-endosomolytic activity. Here we present a novel method of intracellular detection of singlet oxygen using biocompatible polymeric nanosensors, encapsulating the organic fluorescent dye, Singlet Oxygen Sensor Green (SOSG) within its hydrophobic core. The singlet oxygen detection efficiency of the nanosensors was quantified experimentally by treating them with a plasma source and these results were further validated by using Monte Carlo simulations. The change in fluorescence intensity of the nanosensors serves as a metric to detect singlet oxygen in the local micro-environment inside mammalian cancer cells. We used these nanosensors for monitoring singlet oxygen inside endosomes and lysosomes of cancer cells, during cold plasma therapy, using a room-temperature Helium plasma jet.
引用
收藏
页码:3933 / 3941
页数:9
相关论文
共 72 条
[1]   Antibody-Conjugated Nanoparticles for Biomedical Applications [J].
Arruebo, Manuel ;
Valladares, Monica ;
Gonzalez-Fernandez, Africa .
JOURNAL OF NANOMATERIALS, 2009, 2009
[2]  
Barker, 2002, BIOMED DIAGN SCI, P139
[3]  
Barros GP, 2012, INT J GEOPHYS, V2012, DOI [10.5402/2012/137289, 10.1155/2012/459497]
[4]   Evaluation of mTHPC-loaded PLGA nanoparticles for in vitro photodynamic therapy on C6 glioma cell line [J].
Bceuf-Muraille, G. ;
Rigaux, G. ;
Callewaert, M. ;
Zambrano, N. ;
Van Gulick, L. ;
Roullin, V. G. ;
Terryn, C. ;
Andry, M-C ;
Chuburu, F. ;
Dukic, S. ;
Molinari, M. .
PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2019, 25 :448-455
[5]   Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells [J].
Bekeschus, S. ;
Kolata, J. ;
Winterbourn, C. ;
Kramer, A. ;
Turner, R. ;
Weltmann, K. D. ;
Broeker, B. ;
Masur, K. .
FREE RADICAL RESEARCH, 2014, 48 (05) :542-549
[6]   DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation [J].
Cadet, Jean ;
Wagner, J. Richard .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (02)
[7]   X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield [J].
Clement, Sandhya ;
Deng, Wei ;
Camilleri, Elizabeth ;
Wilson, Brian C. ;
Goldys, Ewa M. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Detecting the photosensitization from fullerenes and their dyads with gold nanoparticles with singlet oxygen sensor green [J].
Dallas, Panagiotis ;
Velasco, Pablo Quijano ;
Lebedeva, Maria ;
Porfyrakis, Kyriakos .
CHEMICAL PHYSICS LETTERS, 2019, 730 :130-137
[9]   Drug delivery and nanoparticles: Applications and hazards [J].
De Jong, Wim H. ;
Borm, Paul J. A. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2008, 3 (02) :133-149
[10]   Multiscale kinetic Monte Carlo algorithm for simulating epitaxial growth [J].
DeVita, JP ;
Sander, LM ;
Smereka, P .
PHYSICAL REVIEW B, 2005, 72 (20)