Cartesian genetic programming and the post docking filtering problem

被引:4
作者
Garmendia-Doval, AB
Miller, JF
Morley, SD
机构
来源
GENETIC PROGRAMMING THEORY AND PRACTICE II | 2005年 / 8卷
关键词
Cartesian genetic programming; molecular docking prediction; virtual screening; machine learning; genetic programming; evolutionary algorithms; neutral evolution;
D O I
10.1007/0-387-23254-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Structure-based virtual screening is a technology increasingly used in drug discovery. Although successful at estimating binding modes for input ligands, these technologies are less successful at ranking true hits correctly by binding free energy. This chapter presents the automated removal of false positives from virtual hit sets, by evolving a post docking filter using Cartesian Genetic Programming(CGP). We also investigate characteristics of CGP for this problem and confirm the absence of bloat and the usefulness of neutral drift.
引用
收藏
页码:225 / 244
页数:20
相关论文
共 28 条
[1]  
AFSHAR M, 2004, IN PRESS J COMPUT AI
[2]  
[Anonymous], 1997, GENETIC ALGORITHMS E
[3]  
[Anonymous], GECCO LATE BREAKING
[4]  
[Anonymous], 2004, NAT COMP SER
[5]  
[Anonymous], 2003, GROWTH FORM COMPUTER
[6]  
ASHMORE L, 2000, INVESTIGATION CARTES
[7]  
Garmendia-Doval AB, 2004, LECT NOTES COMPUT SC, V2936, P189
[8]  
Knowles J. D., 2002, Parallel Problem Solving from Nature - PPSN VII. 7th International Conference. Proceedings (Lecture Notes in Computer Science Vol.2439), P88
[9]   Structure-based virtual screening: an overview [J].
Lyne, PD .
DRUG DISCOVERY TODAY, 2002, 7 (20) :1047-1055
[10]  
MILLER J, 2001, 2001 GENETIC EVOLUTI, P295