Ulam stability problem for a mixed type of cubic and additive functional equation

被引:23
作者
Jun, Kil-Woung
Kim, Hark-Mahn
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
[2] Cheongju Univ, Dept Math Educ, Cheongju 360764, South Korea
关键词
Hyers-Ulam stability; cubic mapping; Banach module;
D O I
10.36045/bbms/1148059462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is the aim of this paper to obtain the generalized Hyers-Ulam stability result for a mixed type of cubic and additive functional equation [GRAPHICS] for all (x(1), ... ,x(l),x(l+1)) is an element of Xl+1, where l >= 2.
引用
收藏
页码:271 / 285
页数:15
相关论文
共 21 条
[1]  
Aczel J., 1989, FUNCTIONAL EQUATIONS
[2]  
BAKER JA, 1980, P AM MATH SOC, V80, P411, DOI 10.2307/2043730
[3]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[4]  
Czerwik S., 1994, Stability of Mappings of Hyers-Ulam Type, P81
[5]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[6]  
Hyers D.H., 1998, Stability of Functional Equations in Several Variables
[7]  
Hyers D. H., 1992, Aequationes Math., V44, P125, DOI [10.1007/BF01830975, DOI 10.1007/BF01830975]
[8]   On the asymptoticity aspect of Hyers-Ulam stability of mappings [J].
Hyers, DH ;
Isac, G ;
Rassias, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) :425-430
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]  
JOHNSON BE, 1988, J LOND MATH SOC, V37, P294