Patient-specific ECG classification by deeper CNN from generic to dedicated

被引:98
作者
Li, Yazhao [1 ]
Pang, Yanwei [1 ]
Wang, Jian [1 ]
Li, Xuelong [2 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ECG classification; Deep Convolutional Neural Networks (CNN); Generic CNN (GCNN); Tuned dedicated CNN (TDCNN); Heart monitoring; Wearable devices; HEARTBEAT CLASSIFICATION; ARRHYTHMIA DETECTION; MORPHOLOGY; NETWORK;
D O I
10.1016/j.neucom.2018.06.068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new mechanism which is more effective for wearable devices to classify patient-specific electrocardiogram (ECG) heartbeats. In our method, a Generic Convolutional Neural Network (GCNN) is trained first using a large number of heartbeats without distinguishing patients. Based on the GCNN, fine-tuning technique is applied to modify the GCNN to a Tuned Dedicated CNN (TDCNN) for the corresponding individual. Notably, only the GCNN instead of common training data is required to be stored into wearable devices. Moreover, only fine-tuning with several seconds rather than dozens of minutes is needed before the TDCNN is used to monitor the long-term ECG signals in clinical. To accelerate the ECG classification, only the original ECG heartbeat is input to the CNN without other extended information from the neighbor heartbeats or FFT representation. A deeper CNN architecture with small-scale convolutional kernels is adopted to improve the speed and accuracy for classification. With deeper CNN, hierarchical features can be extracted to help improve the accuracy of ECG classification. The state-of-the-art performance on efficiency and accuracy for ECG classification over MIT-BIH dataset is achieved by the proposed method. The effectiveness and superiority for detecting ventricular ectopic beats (VEB) and supraventricular ectopic beats (SVEB) events are demonstrated. The proposed mechanism of fine-tuning the GCNN to TDCNN improves the efficiency for training patient-specific CNN classifier. Because of the computational efficiency of fine-tuning, ECG diagnosis and heart monitoring can be easily implemented with popular wearable devices in practice. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:336 / 346
页数:11
相关论文
共 45 条
[1]   ECG beat detection using filter banks [J].
Afonso, VX ;
Tompkins, WJ ;
Nguyen, TQ ;
Luo, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1999, 46 (02) :192-202
[2]  
[Anonymous], 2015, INT C MACHINE LEARN, DOI DOI 10.5555/3045118.3045167
[3]  
[Anonymous], 2012, TEST REP PERF RES CA
[4]   Sigmoidal radial basis function ANN for QRS complex detection [J].
Arbateni, Khaled ;
Bennia, Abdelhak .
NEUROCOMPUTING, 2014, 145 :438-450
[5]   Removing artifacts from electrocardiographic signals using independent components analysis [J].
Barros, AK ;
Mansour, A ;
Ohnishi, N .
NEUROCOMPUTING, 1998, 22 (1-3) :173-186
[6]   Principal component analysis in ECG signal processing [J].
Castells, Francisco ;
Laguna, Pablo ;
Soernmo, Leif ;
Bollmann, Andreas ;
Roig, José Millet .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)
[7]   A comparative analysis of principal component and independent component techniques for electrocardiograms [J].
Chawla, M. P. S. .
NEURAL COMPUTING & APPLICATIONS, 2009, 18 (06) :539-556
[8]   Automatic classification of heartbeats using ECG morphology and heartbeat interval features [J].
de Chazal, P ;
O'Dwyer, M ;
Reilly, RB .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (07) :1196-1206
[9]   A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features [J].
de Chazal, Philip ;
Reilly, Richard B. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (12) :2535-2543
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848