Glucose becomes one of the worst carbon sources for E-coli on poor nitrogen sources due to suboptimal levels of cAMP

被引:100
作者
Bren, Anat [1 ]
Park, Junyoung O. [2 ,3 ]
Towbin, Benjamin D. [1 ]
Dekel, Erez [1 ]
Rabinowitz, Joshua D. [2 ,4 ]
Alon, Uri [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Cell Biol, IL-76100 Rehovot, Israel
[2] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
基金
瑞士国家科学基金会; 以色列科学基金会; 欧洲研究理事会;
关键词
CYCLIC-AMP; GENE-EXPRESSION; CATABOLITE REPRESSION; GROWTH; METABOLISM; OPTIMALITY; GLUTAMINE; ENZYME; PHOSPHORYLATION; ASSIMILATION;
D O I
10.1038/srep24834
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including alpha-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a 'bug' that leads to slow growth under what may be an environmentally rare condition.
引用
收藏
页数:10
相关论文
共 61 条
[1]   Hierarchy of non-glucose sugars in Escherichia coli [J].
Aidelberg, Guy ;
Towbin, Benjamin D. ;
Rothschild, Daphna ;
Dekel, Erez ;
Bren, Anat ;
Alon, Uri .
BMC SYSTEMS BIOLOGY, 2014, 8
[2]  
[Anonymous], 1996, Optima for animals
[3]   Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis [J].
Aoyama, K ;
Uemura, I ;
Miyake, J ;
Asada, Y .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1997, 83 (01) :17-20
[4]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[5]   Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli [J].
Bennett, Bryson D. ;
Kimball, Elizabeth H. ;
Gao, Melissa ;
Osterhout, Robin ;
Van Dien, Stephen J. ;
Rabinowitz, Joshua D. .
NATURE CHEMICAL BIOLOGY, 2009, 5 (08) :593-599
[6]   Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12 [J].
Bettenbrock, Katja ;
Sauter, Thomas ;
Jahreis, Knut ;
Kremling, Andreas ;
Lengeler, Joseph W. ;
Gilles, Ernst-Dieter .
JOURNAL OF BACTERIOLOGY, 2007, 189 (19) :6891-6900
[7]  
Blount ZD, 2015, ELIFE, V4, DOI 10.7554/eLife.05826
[8]   Nonoptimal Microbial Response to Antibiotics Underlies Suppressive Drug Interactions [J].
Bollenbach, Tobias ;
Quan, Selwyn ;
Chait, Remy ;
Kishony, Roy .
CELL, 2009, 139 (04) :707-718
[9]   The last generation of bacterial growth in limiting nutrient [J].
Bren, Anat ;
Hart, Yuval ;
Dekel, Erez ;
Koster, Daniel ;
Alon, Uri .
BMC SYSTEMS BIOLOGY, 2013, 7
[10]  
Brown S. D., 2015, GENOME ANNOUNC, V3