Effective stability against superradiance of Kerr black holes with synchronised hair

被引:61
作者
Carlos Degollado, Juan [1 ]
Herdeiro, Carlos A. R. [2 ,3 ]
Radu, Eugen [2 ,3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Apdo Postal 48-3, Cuernavaca 62251, Morelos, Mexico
[2] Univ Aveiro, Dept Fis, Campus Santiago, P-3810183 Aveiro, Portugal
[3] CIDMA, Campus Santiago, P-3810183 Aveiro, Portugal
基金
欧盟地平线“2020”;
关键词
BARYON NUMBER; NONEXISTENCE;
D O I
10.1016/j.physletb.2018.04.052
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Kerr black holes with synchronised hair [1,2] are a counter example to the no hair conjecture, in General Relativity minimally coupled to simple matter fields (with mass mu) obeying all energy conditions. Since these solutions have, like Kerr, an ergoregion it has been a lingering possibility that they are afflicted by the superradiant instability, the same process that leads to their dynamical formation from Kerr. A recent breakthrough [3] confirmed this instability and computed the corresponding timescales for a sample of solutions. We discuss how these results and other observations support two conclusions: 1) starting from the Kerr limit, the increase of hair for fixed coupling mu M (where M is the BH mass) increases the timescale of the instability; 2) there are hairy solutions for which this timescale, for astrophysical black hole masses, is larger than the age of the Universe. The latter conclusion introduces the limited, but physically relevant concept of effective stability. The former conclusion, allows us to identify an astrophysically viable domain of such effectively stable hairy black holes, occurring, conservatively, for M mu <= 0.25. These are hairy BHs that form dynamically, from the superradiant instability of Kerr, within an astrophysical timescale, but whose own superradiant instability occurs only in a cosmological timescale. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:651 / 655
页数:5
相关论文
共 38 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (14)
[3]  
Abbott BP, 2017, PHYS REV LETT, V118, DOI [10.1103/PhysRevLett.118.121102, 10.1103/PhysRevLett.118.221101]
[4]  
Abbott B. P., 2016, Phys. Rev. Lett., V116
[5]   Exploring the string axiverse with precision black hole physics [J].
Arvanitaki, Asimina ;
Dubovsky, Sergei .
PHYSICAL REVIEW D, 2011, 83 (04)
[6]   NONEXISTENCE OF BARYON NUMBER FOR STATIC BLACK HOLES [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1972, 5 (06) :1239-+
[7]   TRANSCENDENCE OF LAW OF BARYON-NUNBER CONSERVATION IN BLACK HOLE PHYSICS [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW LETTERS, 1972, 28 (07) :452-+
[8]   NONEXISTENCE OF BARYON NUMBER FOR BLACK HOLES .2. [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1972, 5 (10) :2403-+
[9]   Kerr-Newman scalar clouds [J].
Benone, Carolina L. ;
Crispino, Luis C. B. ;
Herdeiro, Carlos ;
Radu, Eugen .
PHYSICAL REVIEW D, 2014, 90 (10)
[10]   Testing general relativity with present and future astrophysical observations [J].
Berti, Emanuele ;
Barausse, Enrico ;
Cardoso, Vitor ;
Gualtieri, Leonardo ;
Pani, Paolo ;
Sperhake, Ulrich ;
Stein, Leo C. ;
Wex, Norbert ;
Yagi, Kent ;
Baker, Tessa ;
Burgess, C. P. ;
Coelho, Flavio S. ;
Doneva, Daniela ;
De Felice, Antonio ;
Ferreira, Pedro G. ;
Freire, Paulo C. C. ;
Healy, James ;
Herdeiro, Carlos ;
Horbatsch, Michael ;
Kleihaus, Burkhard ;
Klein, Antoine ;
Kokkotas, Kostas ;
Kunz, Jutta ;
Laguna, Pablo ;
Lang, Ryan N. ;
Li, Tjonnie G. F. ;
Littenberg, Tyson ;
Matas, Andrew ;
Mirshekari, Saeed ;
Okawa, Hirotada ;
Radu, Eugen ;
O'Shaughnessy, Richard ;
Sathyaprakash, Bangalore S. ;
Van den Broeck, Chris ;
Winther, Hans A. ;
Witek, Helvi ;
Aghili, Mir Emad ;
Alsing, Justin ;
Bolen, Brett ;
Bombelli, Luca ;
Caudill, Sarah ;
Chen, Liang ;
Degollado, Juan Carlos ;
Fujita, Ryuichi ;
Gao, Caixia ;
Gerosa, Davide ;
Kamali, Saeed ;
Silva, Hector O. ;
Rosa, Joao G. ;
Sadeghian, Laleh .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (24)