Critical curves in conformally invariant statistical systems

被引:28
作者
Rushkin, I. [1 ]
Bettelheim, E. [1 ]
Gruzberg, I. A. [1 ]
Wiegmann, P. [1 ]
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/1751-8113/40/9/020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider critical curves-conformally invariant curves-that appear at critical points of two-dimensional statistical mechanical systems. We show how to describe these curves in terms of the Coulomb gas formalism of conformal field theory (CFT). We also provide links between this description and the stochastic (Schramm-) Loewner evolution (SLE). The connection appears in the long-time limit of stochastic evolution of various SLE observables related to CFT primary fields. We show how the multifractal spectrum of harmonic measure and other fractal characteristics of critical curves can be obtained.
引用
收藏
页码:2165 / 2195
页数:31
相关论文
共 49 条
[1]  
Ahlfors L. V., 1973, McGraw-Hill Series in Higher Mathematics
[2]  
[Anonymous], HARMONIC MEASURE
[3]  
[Anonymous], 1999, ST PETERSBOURG MATH
[4]   Dipolar stochastic Loewner evolutions [J].
Bauer, M ;
Bernard, D ;
Houdayer, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :1-18
[5]   CFTs of SLEs: the radial-case [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2004, 583 (3-4) :324-330
[6]   Conformal field theories of stochastic Loewner evolutions [J].
Bauer, M ;
Bernard, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 239 (03) :493-521
[7]   SLEκ growth processes and conformal field theories [J].
Bauer, M ;
Bernard, D .
PHYSICS LETTERS B, 2002, 543 (1-2) :135-138
[8]  
BAUER M, 2003, P NATO C CONF INV RA
[9]   2D growth processes: SLE and Loewner chains [J].
Bauer, Michel ;
Bernard, Denis .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 432 (3-4) :115-221
[10]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380