Any orthonormal basis in high dimension is uniformly distributed over the sphere

被引:2
作者
Goldstein, Sheldon [1 ,2 ]
Lebowitz, Joel L. [1 ,2 ]
Tumulka, Roderich [1 ]
Zanghi, Nino [3 ,4 ]
机构
[1] Rutgers State Univ, Dept Math, Hill Ctr, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Phys, Hill Ctr, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[3] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy
[4] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 02期
基金
美国国家科学基金会;
关键词
Law of large numbers; Haar measure on the orthogonal or unitary groups; Asymptotics in high dimension; Irreducible representations of the orthogonal or unitary groups; random orthonormal basis; ENTRIES;
D O I
10.1214/15-AIHP732
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-d be a real or complex Hilbert space of finite but large dimension d, let S(X-d) denote the unit sphere of X-d, and let u denote the normalized uniform measure on S(X-d). For a finite subset B of S(X-d), we may test whether it is approximately uniformly distributed over the sphere by choosing a partition A1, ..., Am of S(X-d) and checking whether the fraction of points in B that lie in A(k) is close to u(A(k)) for each k = 1, ..., m. We show that if B is any orthonormal basis of X-d and m is not too large, then, if we randomize the test by applying a random rotation to the sets A1, ..., Am, B will pass the random test with probability close to 1. This statement is related to, but not entailed by, the law of large numbers. An application of this fact in quantum statistical mechanics is briefly described.
引用
收藏
页码:701 / 717
页数:17
相关论文
共 24 条
[1]  
[Anonymous], LECT NOTES PHYS
[2]  
[Anonymous], 1986, Probability and Measure
[3]   Deterministic Approach to the Kinetic Theory of Gases [J].
Beck, Jozsef .
JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) :160-269
[4]  
Cai T, 2013, J MACH LEARN RES, V14, P1837
[5]   Canonical typicality [J].
Goldstein, S ;
Lebowitz, JL ;
Tumulka, R ;
Zanghì, N .
PHYSICAL REVIEW LETTERS, 2006, 96 (05)
[6]   On the distribution of the wave function for systems in thermal equilibrium [J].
Goldstein, Sheldon ;
Lebowitz, Joel L. ;
Tumulka, Roderich ;
Zanghi, Nino .
JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (5-6) :1197-1225
[7]   Universal Probability Distribution for the Wave Function of a Quantum System Entangled with its Environment [J].
Goldstein, Sheldon ;
Lebowitz, Joel L. ;
Mastrodonato, Christian ;
Tumulka, Roderich ;
Zanghi, Nino .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (03) :965-988
[8]   How many entries of a typical orthogonal matrix can be approximated by independent normals? [J].
Jiang, Tiefeng .
ANNALS OF PROBABILITY, 2006, 34 (04) :1497-1529
[9]   The Entries of Haar-Invariant Matrices from the Classical Compact Groups [J].
Jiang, Tiefeng .
JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) :1227-1243
[10]   Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles [J].
Jiang, Tiefeng .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (1-2) :221-246