The two main challenges facing dental composite restorations are secondary caries and bulk fracture. Previous studies developed whisker-reinforced Ca-PO4 composites that were relatively opaque. The objective of this study was to develop an esthetic glass particle-reinforced, photo-cured calcium phosphate composite. Tetracalcium phosphate (TTCP) particles were incorporated into a resin for Ca and PO4 release, while glass particles provided reinforcement. Ion release and mechanical properties were measured after immersion in solutions with pH of 7, 5.5, and 4. For the composite containing 40% mass fraction of TTCP, incorporating glass fillers increased the strength (p < 0.05). Flexural strength (Mean +/- SD; n = 6.) at 30% glass was 99 +/- 18 MPa, higher than 54 +/- 20 MPa at 0% glass (p < 0.05). Elastic modulus was I I GPa at 30% glass, compared to 2 GPa without glass. At 28 days, the released Ca ion concentration was 4.61 +/- 0.18 mmol/L at pH of 4, much higher than 1.14 +/- 0.07 at pH of 5.5, and 0.27 +/- 0.01 at pH of 7 (p < 0.05). PO4 release was also dramatically increased at cariogenic, acidic pH. The TTCP-glass composite had strength 2-3 fold that of a resin-modified glass ionomer control. In conclusion, the photo-cured TTCP-glass composite was "smart" and substantially increased the Ca and PO4 release when the pH was reduced from neutral to a cariogenic pH of 4, when these ions are most needed to inhibit tooth caries. Its mechanical properties were significantly higher than previous Ca, PO4, and fluoride releasing restoratives. Hence, the photo-cured TTCP-glass composite may have potential to provide the necessary combination of load-bearing and caries-inhibiting capabilities. (C) 2009 Wiley Periodicals. Inc. J Biomed Mater Res Part B: Appl Biomater 92B: 332-340. 2010