Structural and material mechanical properties of human vertebral cancellous bone

被引:84
作者
Nicholson, PHF
Cheng, XG
Lowet, G
Boonen, S
Davie, MWJ
Dequeker, J
Van der Perre, G
机构
[1] Katholieke Univ Leuven, Div Biomech & Engn Design, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Arthrit & Metab Bone Dis Res Unit, B-3001 Louvain, Belgium
[3] Robert Jones & Agnes Hunt Orthopaed Hosp, Charles Salt Res Ctr, Oswestry SY10 7AG, Shrops, England
关键词
cancellous bone; vertebra; mechanical properties; anisotropy; ultrasound;
D O I
10.1016/S1350-4533(97)00030-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The structural Young's modulus (i.e. that of the cancellous framework) was determined by non-destructive compressive mechanical testing in the the ee orthogonal ax es of 48 vertebral bone cubes. In addition, the material Young's modulus (i.e. of the trabeculae themselves) was estimated using an ultrasonic technique. Apparent and true density were determined by direct physical measurements. Significant mechanical anisotropy was observed: mean structural Young's modulus varied from 165 MPa in the supero-inferior direction to 43 MPa in the lateral direction. Structural Young's modulus correlated with apparent density, with power-law regression models giving the best correlations (r(2) = 0.52-0.88). Mechanical anisotropy increased as a function of decreasing apparent density (p < 0.001). Material Young's modulus was 10.0 +/- 1.3 GPa, and was negatively correlated with apparent density (p < 0.001). In multiple regression models, material Young's modulus was a significant independent predictor of structural Young's modulus only in the supero-inferior direction. The data suggest the presence of two effects in vertebral bone associated with decreasing apparent density and, by implication, bone loss in general: (a) increased mechanical anisotropy such that there is relative conservation of stiffness in the axial direction compared with the transverse directions; and (b) increased stiffness of the trabeculae themselves. (C) 1997 IPEM Published by Elsevier Science Ltd.
引用
收藏
页码:729 / 737
页数:9
相关论文
共 37 条
[1]   ELASTIC-MODULUS OF TRABECULAR BONE MATERIAL [J].
ASHMAN, RB ;
RHO, JY .
JOURNAL OF BIOMECHANICS, 1988, 21 (03) :177-181
[2]   FINITE-ELEMENT ANALYSIS OF A 3-DIMENSIONAL OPEN-CELLED MODEL FOR TRABECULAR BONE [J].
BEAUPRE, GS ;
HAYES, WC .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1985, 107 (03) :249-256
[3]   COMPRESSIVE BEHAVIOR OF BONE AS A 2-PHASE POROUS STRUCTURE [J].
CARTER, DR ;
HAYES, WC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1977, 59 (07) :954-962
[4]   Prevalence of trabecular microcallus formation in the vertebral body and the femoral neck [J].
Cheng, XG ;
Nicholson, PHF ;
Lowet, G ;
Boonen, S ;
Sun, Y ;
Ruegsegger, P ;
Muller, R ;
Dequeker, J .
CALCIFIED TISSUE INTERNATIONAL, 1997, 60 (05) :479-484
[5]  
Currey J D, 1986, Eng Med, V15, P153, DOI 10.1243/EMED_JOUR_1986_015_039_02
[6]   RELATIONSHIP BETWEEN STIFFNESS AND MINERAL CONTENT OF BONE [J].
CURREY, JD .
JOURNAL OF BIOMECHANICS, 1969, 2 (04) :477-&
[7]  
DEQUEKER J, 1995, CLIN RHEUM, V14, P596
[8]   PHYSICAL PROPERTIES OF TRABECULAR BONE [J].
GALANTE, J ;
ROSTOKER, W ;
RAY, RD .
CALCIFIED TISSUE RESEARCH, 1970, 5 (03) :236-&
[9]   THE MECHANICAL-BEHAVIOR OF CANCELLOUS BONE [J].
GIBSON, LJ .
JOURNAL OF BIOMECHANICS, 1985, 18 (05) :317-&
[10]   THE MECHANICAL-PROPERTIES OF TRABECULAR BONE - DEPENDENCE ON ANATOMIC LOCATION AND FUNCTION [J].
GOLDSTEIN, SA .
JOURNAL OF BIOMECHANICS, 1987, 20 (11-12) :1055-1061