Pretraining and Fine-Tuning Strategies for Sentiment Analysis of Latvian Tweets

被引:5
|
作者
Thakkar, Gaurish [1 ]
Pinnis, Marcis [2 ,3 ]
机构
[1] Univ Zagreb, Fac Humanities & Social Sci, Ul Ivana Lucica 3, Zagreb 10000, Croatia
[2] Tilde, Vienibas Gatve 75A, LV-1004 Riga, Latvia
[3] Univ Latvia, Raina Bulv 19-125, LV-1586 Riga, Latvia
来源
HUMAN LANGUAGE TECHNOLOGIES - THE BALTIC PERSPECTIVE (HLT 2020) | 2020年 / 328卷
关键词
Sentiment analysis; word embeddings; BERT; Latvian;
D O I
10.3233/FAIA200602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present various pre-training strategies that aid in improving the accuracy of the sentiment classification task. At first, we pre-train language representation models using these strategies and then fine-tune them on the downstream task. Experimental results on a time-balanced tweet evaluation set show the improvement over the previous technique. We achieve 76% accuracy for sentiment analysis on Latvian tweets, which is a substantial improvement over previous work.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [41] Sentiment Analysis of English Tweets Using RapidMiner
    Tripathi, Pragya
    Vishwakarma, Santosh Kr
    Lala, Ajay
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 668 - 672
  • [42] Sentiment Analysis on Tweets with Punctuations, Emoticons, and Negations
    Cureg, Miks Q.
    De La Cruz, Juan Aurel D.
    Solomon, Juan Carlos A.
    Saharkhiz, Aresh T.
    Balan, Ariel Kelly D.
    Samonte, Mary Jane C.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (ICISS 2019), 2019, : 266 - 270
  • [43] Sentiment Analysis of Arabic Jordanian Dialect Tweets
    Atoum, Jalal Omer
    Nouman, Mais
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (02) : 256 - 262
  • [44] Piegas: A System for Sentiment Analysis of Tweets in Portuguese
    Grandin, P.
    Adan, J. M.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (07) : 3467 - 3473
  • [45] Sentiment Analysis of Tweets Including Emoji Data
    LeCompte, Travis
    Chen, Jianhua
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 793 - 798
  • [46] Uses of Machine Translation in the Sentiment Analysis of Tweets
    Peisenieks, Janis
    Skadins, Raivis
    HUMAN LANGUAGE TECHNOLOGIES - THE BALTIC PERSPECTIVE, BALTIC HLT 2014, 2014, 268 : 126 - 131
  • [47] Analysis and Visualization of Sentiment and Emotion on Crisis Tweets
    Torkildson, Megan K.
    Starbird, Kate
    Aragon, Cecilia R.
    COOPERATIVE DESIGN, VISUALIZATION, AND ENGINEERING, CDVE 2014, 2014, 8683 : 64 - 67
  • [48] Triangulated Sentiment Analysis of Tweets for Social CRM
    Griesser, Simone E.
    Gupta, Neha
    2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS), 2019, : 75 - 79
  • [49] A Practical Approach to Sentiment Analysis of Hindi Tweets
    Sharma, Yakshi
    Mangat, Veenu
    Kaur, Mandeep
    2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT), 2015, : 677 - 680
  • [50] An Empirical Evaluation of the Zero-Shot, Few-Shot, and Traditional Fine-Tuning Based Pretrained Language Models for Sentiment Analysis in Software Engineering
    Shafikuzzaman, Md
    Islam, Md Rakibul
    Rolli, Alex C.
    Akhter, Sharmin
    Seliya, Naeem
    IEEE ACCESS, 2024, 12 : 109714 - 109734