Pretraining and Fine-Tuning Strategies for Sentiment Analysis of Latvian Tweets

被引:5
|
作者
Thakkar, Gaurish [1 ]
Pinnis, Marcis [2 ,3 ]
机构
[1] Univ Zagreb, Fac Humanities & Social Sci, Ul Ivana Lucica 3, Zagreb 10000, Croatia
[2] Tilde, Vienibas Gatve 75A, LV-1004 Riga, Latvia
[3] Univ Latvia, Raina Bulv 19-125, LV-1586 Riga, Latvia
来源
HUMAN LANGUAGE TECHNOLOGIES - THE BALTIC PERSPECTIVE (HLT 2020) | 2020年 / 328卷
关键词
Sentiment analysis; word embeddings; BERT; Latvian;
D O I
10.3233/FAIA200602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present various pre-training strategies that aid in improving the accuracy of the sentiment classification task. At first, we pre-train language representation models using these strategies and then fine-tune them on the downstream task. Experimental results on a time-balanced tweet evaluation set show the improvement over the previous technique. We achieve 76% accuracy for sentiment analysis on Latvian tweets, which is a substantial improvement over previous work.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [31] Emerging trends: A gentle introduction to fine-tuning
    Church, Kenneth Ward
    Chen, Zeyu
    Ma, Yanjun
    NATURAL LANGUAGE ENGINEERING, 2021, 27 (06) : 763 - 778
  • [32] Transfer fine-tuning of BERT with phrasal paraphrases
    Arase, Yuki
    Tsujii, Junichi
    COMPUTER SPEECH AND LANGUAGE, 2021, 66
  • [33] SPEECH RECOGNITION BY SIMPLY FINE-TUNING BERT
    Huang, Wen-Chin
    Wu, Chia-Hua
    Luo, Shang-Bao
    Chen, Kuan-Yu
    Wang, Hsin-Min
    Toda, Tomoki
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 7343 - 7347
  • [34] Efficient Fine-Tuning of BERT Models on the Edge
    Vucetic, Danilo
    Tayaranian, Mohammadreza
    Ziaeefard, Maryam
    Clark, James J.
    Meyer, Brett H.
    Gross, Warren J.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1838 - 1842
  • [35] Movie sentiment analysis based on public tweets
    Blatnik, Aljaz
    Jarm, Kaja
    Meza, Marko
    ELEKTROTEHNISKI VESTNIK-ELECTROCHEMICAL REVIEW, 2014, 81 (04): : 160 - 166
  • [36] Detection of Fake Tweets Using Sentiment Analysis
    Monica C.
    Nagarathna N.
    SN Computer Science, 2020, 1 (2)
  • [37] Sentiment Analysis of Live Tweets After Elections
    Baid, Palak
    Chaplot, Neelam
    EMERGING TRENDS IN EXPERT APPLICATIONS AND SECURITY, 2019, 841 : 307 - 314
  • [38] Arabic tweets sentiment analysis - a hybrid scheme
    Aldayel, Haifa K.
    Azmi, Aqil M.
    JOURNAL OF INFORMATION SCIENCE, 2016, 42 (06) : 782 - 797
  • [39] Sentiment analysis for the tweets that contain the word "earthquake"
    Pirnau, Mironela
    PROCEEDINGS OF THE 2018 10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI), 2018,
  • [40] Sentiment analysis of tweets on social security and medicare
    Chakravarty, Unmesh Kumar
    Arifuzzaman, Shaikh
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)