Pretraining and Fine-Tuning Strategies for Sentiment Analysis of Latvian Tweets

被引:5
|
作者
Thakkar, Gaurish [1 ]
Pinnis, Marcis [2 ,3 ]
机构
[1] Univ Zagreb, Fac Humanities & Social Sci, Ul Ivana Lucica 3, Zagreb 10000, Croatia
[2] Tilde, Vienibas Gatve 75A, LV-1004 Riga, Latvia
[3] Univ Latvia, Raina Bulv 19-125, LV-1586 Riga, Latvia
来源
HUMAN LANGUAGE TECHNOLOGIES - THE BALTIC PERSPECTIVE (HLT 2020) | 2020年 / 328卷
关键词
Sentiment analysis; word embeddings; BERT; Latvian;
D O I
10.3233/FAIA200602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present various pre-training strategies that aid in improving the accuracy of the sentiment classification task. At first, we pre-train language representation models using these strategies and then fine-tune them on the downstream task. Experimental results on a time-balanced tweet evaluation set show the improvement over the previous technique. We achieve 76% accuracy for sentiment analysis on Latvian tweets, which is a substantial improvement over previous work.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [21] Fine-Tuning Retrieval-Augmented Generation with an Auto-Regressive Language Model for Sentiment Analysis in Financial Reviews
    Mathebula, Miehleketo
    Modupe, Abiodun
    Marivate, Vukosi
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [22] Sentiment Analysis of Arabic Tweets using ARABERT as a fine tuner and feature extractors
    Alsugair, Athir Mohammed
    Alghamdi, Norah Saleh
    2024 11TH IEEE SWISS CONFERENCE ON DATA SCIENCE, SDS 2024, 2024, : 31 - 36
  • [23] Sentiment Analysis for Religious Tweets
    Abubakir, Shahislam
    Baimbet, Aruzhan
    Kabieva, Akmaral
    Sarsenov, Bauyrzhan
    Seidilabek, Aisha
    Akhmetov, Iskander
    Gelbukh, Alexander
    COMPUTACION Y SISTEMAS, 2024, 28 (04): : 1911 - 1918
  • [24] Sentiment Analysis of Tweets Using Deep Learning
    Ranganathan, Jaishree
    Tsahai, Tsega
    ADVANCED DATA MINING AND APPLICATIONS (ADMA 2022), PT I, 2022, 13725 : 106 - 117
  • [25] Fine-tuning ChatGPT for automatic scoring
    Latif E.
    Zhai X.
    Computers and Education: Artificial Intelligence, 2024, 6
  • [26] Detecting Negative Sentiment on Sarcastic Tweets for Sentiment Analysis
    Li, Qingyuan
    Zhang, Kai
    Sun, Lin
    Xia, Ruichen
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PART X, 2023, 14263 : 479 - 491
  • [27] Sentiment Analysis in Latvian and Russian: A Survey
    Viksna, Rinalds
    Jekabsons, Gints
    APPLIED COMPUTER SYSTEMS, 2018, 23 (01) : 45 - 51
  • [28] Sentiment Analysis of Tweets Using Semantic Analysis
    Kale, Snehal
    Padmadas, Vijaya
    2017 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2017,
  • [29] Sentiment Analysis on Tweets for Social Events
    Zhou, Xujuan
    Tao, Xiaohui
    Yong, Jianming
    Yang, Zhenyu
    PROCEEDINGS OF THE 2013 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2013, : 557 - 562
  • [30] Comparing Fine-Tuning and Prompt Engineering for Multi-Class Classification in Hospitality Review Analysis
    Botunac, Ive
    Bakaric, Marija Brkic
    Matetic, Maja
    APPLIED SCIENCES-BASEL, 2024, 14 (14):