Pretraining and Fine-Tuning Strategies for Sentiment Analysis of Latvian Tweets

被引:5
|
作者
Thakkar, Gaurish [1 ]
Pinnis, Marcis [2 ,3 ]
机构
[1] Univ Zagreb, Fac Humanities & Social Sci, Ul Ivana Lucica 3, Zagreb 10000, Croatia
[2] Tilde, Vienibas Gatve 75A, LV-1004 Riga, Latvia
[3] Univ Latvia, Raina Bulv 19-125, LV-1586 Riga, Latvia
来源
HUMAN LANGUAGE TECHNOLOGIES - THE BALTIC PERSPECTIVE (HLT 2020) | 2020年 / 328卷
关键词
Sentiment analysis; word embeddings; BERT; Latvian;
D O I
10.3233/FAIA200602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present various pre-training strategies that aid in improving the accuracy of the sentiment classification task. At first, we pre-train language representation models using these strategies and then fine-tune them on the downstream task. Experimental results on a time-balanced tweet evaluation set show the improvement over the previous technique. We achieve 76% accuracy for sentiment analysis on Latvian tweets, which is a substantial improvement over previous work.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
  • [1] Fine-Tuning of Word Embeddings for Semantic Sentiment Analysis
    Atzeni, Mattia
    Recupero, Diego Reforgiato
    SEMANTIC WEB CHALLENGES, SEMWEBEVAL 2018, 2018, 927 : 140 - 150
  • [2] Fine-tuning XLNet for Amazon review sentiment analysis: A comparative evaluation of transformer models
    Shetty, Amrithkala M.
    Manjaiah, D. H.
    Aljunid, Mohammed Fadhel
    ETRI JOURNAL, 2025,
  • [3] Cross-Domain Sentiment Analysis Based on Small in-Domain Fine-Tuning
    Kotelnikova, Anastasia V.
    Vychegzhanin, Sergey V.
    Kotelnikov, Evgeny V.
    IEEE ACCESS, 2023, 11 : 41061 - 41074
  • [4] A BERT Fine-tuning Model for Targeted Sentiment Analysis of Chinese Online Course Reviews
    Zhang, Huibing
    Dong, Junchao
    Min, Liang
    Bi, Peng
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (7-8)
  • [5] BERT Fine-Tuning for Sentiment Analysis on Indonesian Mobile Apps Reviews
    Nugroho, Kuncahyo Setyo
    Sukmadewa, Anantha Yullian
    Wuswilahaken, Haftittah Dw
    Bachtiar, Fitra Abdurrachman
    Yudistira, Novanto
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY, SIET 2021, 2021, : 258 - 264
  • [6] Sentiment Analysis Using Pre-Trained Language Model With No Fine-Tuning and Less Resource
    Kit, Yuheng
    Mokji, Musa Mohd
    IEEE ACCESS, 2022, 10 : 107056 - 107065
  • [7] Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning
    Prottasha, Nusrat Jahan
    Sami, Abdullah As
    Kowsher, Md
    Murad, Saydul Akbar
    Bairagi, Anupam Kumar
    Masud, Mehedi
    Baz, Mohammed
    SENSORS, 2022, 22 (11)
  • [8] A Fine Grain Sentiment Analysis with Semantics in Tweets
    Barba Gonzalez, Cristobal
    Garcia-Nieto, Jose
    Navas-Delgado, Ismael
    Aldana-Montes, Jose F.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2016, 3 (06): : 22 - 28
  • [9] Fine-Tuning Llama 3 for Sentiment Analysis: Leveraging AWS Cloud for Enhanced Performance
    Shantanu Kumar
    Shruti Singh
    SN Computer Science, 5 (8)
  • [10] Fine-Tuning Transformer-Based Representations in Active Learning for Labelling Crisis Dataset of Tweets
    Paul N.R.
    Balabantaray R.C.
    Sahoo D.
    SN Computer Science, 4 (5)