Isoform-level gene expression patterns in single-cell RNA-sequencing data

被引:11
作者
Trung Nghia Vu [1 ]
Wills, Quin F. [2 ]
Kalari, Krishna R. [3 ]
Niu, Nifang [4 ]
Wang, Liewei [4 ]
Pawitan, Yudi [1 ]
Rantalainen, Mattias [1 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17177 Stockholm, Sweden
[2] Novo Nordisk Res Ctr Oxford, Oxford OX3 7BN, England
[3] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Mol Pharmacol & Expt Therapeut, Rochester, MN 55905 USA
基金
瑞典研究理事会;
关键词
FALSE DISCOVERY RATE; SEQ DATA; QUANTIFICATION; ALIGNMENT;
D O I
10.1093/bioinformatics/bty100
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: RNA sequencing of single cells enables characterization of transcriptional heterogeneity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a wide range of researches fields. However, few studies have focus on characterization of isoform-level expression patterns at the single-cell level. In this study, we propose and apply a novel method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression patterns of isoform pairs from the same gene in single-cell isoform-level expression data. Results: We define six principal patterns of isoform expression relationships and describe a method for differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern types to each of 16 562 isoform-pairs from 4929 genes. Among those, 26% of the discovered patterns were significant (P<0.05), while remaining patterns are possibly effects of transcriptional bursting, dropout and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-pattern analysis were not detected by differential-expression analysis. Finally, the effects of drop-out events and expression levels of isoforms on ISOP's performances were investigated through simulated datasets. To conclude, ISOP provides a novel approach for characterization of isoform-level preference, commitment and heterogeneity in single-cell RNA-sequencing data.
引用
收藏
页码:2392 / 2400
页数:9
相关论文
共 40 条
[1]   Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis [J].
Aceto, Nicola ;
Bardia, Aditya ;
Miyamoto, David T. ;
Donaldson, Maria C. ;
Wittner, Ben S. ;
Spencer, Joel A. ;
Yu, Min ;
Pely, Adam ;
Engstrom, Amanda ;
Zhu, Huili ;
Brannigan, Brian W. ;
Kapur, Ravi ;
Stott, Shannon L. ;
Shioda, Toshi ;
Ramaswamy, Sridhar ;
Ting, David T. ;
Lin, Charles P. ;
Toner, Mehmet ;
Haber, Daniel A. ;
Maheswaran, Shyamala .
CELL, 2014, 158 (05) :1110-1122
[2]   High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin [J].
Achim, Kaia ;
Pettit, Jean-Baptiste ;
Saraiva, Luis R. ;
Gavriouchkina, Daria ;
Larsson, Tomas ;
Arendt, Detlev ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :503-U215
[3]   Unravelling biology and shifting paradigms in cancer with single-cell sequencing [J].
Baslan, Timour ;
Hicks, James .
NATURE REVIEWS CANCER, 2017, 17 (09) :557-569
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Mechanisms of alternative pre-messenger RNA splicing [J].
Black, DL .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :291-336
[6]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[7]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[8]   mRNA-Seq of Single Prostate Cancer Circulating Tumor Cells Reveals Recapitulation of Gene Expression and Pathways Found in Prostate Cancer [J].
Cann, Gordon M. ;
Gulzar, Zulfiqar G. ;
Cooper, Samantha ;
Li, Robin ;
Luo, Shujun ;
Tat, Mai ;
Stuart, Sarah ;
Schroth, Gary ;
Srinivas, Sandhya ;
Ronaghi, Mostafa ;
Brooks, James D. ;
Talasaz, AmirAli H. .
PLOS ONE, 2012, 7 (11)
[9]   Reactome: a database of reactions, pathways and biological processes [J].
Croft, David ;
O'Kelly, Gavin ;
Wu, Guanming ;
Haw, Robin ;
Gillespie, Marc ;
Matthews, Lisa ;
Caudy, Michael ;
Garapati, Phani ;
Gopinath, Gopal ;
Jassal, Bijay ;
Jupe, Steven ;
Kalatskaya, Irina ;
Mahajan, Shahana ;
May, Bruce ;
Ndegwa, Nelson ;
Schmidt, Esther ;
Shamovsky, Veronica ;
Yung, Christina ;
Birney, Ewan ;
Hermjakob, Henning ;
D'Eustachio, Peter ;
Stein, Lincoln .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D691-D697
[10]   SCell: integrated analysis of single-cell RNA-seq data [J].
Diaz, Aaron ;
Liu, Siyuan J. ;
Sandoval, Carmen ;
Pollen, Alex ;
Nowakowski, Tom J. ;
Lim, Daniel A. ;
Kriegstein, Arnold .
BIOINFORMATICS, 2016, 32 (14) :2219-2220