In-silico screening of potential target transporters for glycyrrhetinic acid (GA) via deep learning prediction of drug-target interactions

被引:5
作者
Alkhadrawi, Adham M. [1 ]
Wang, Ying [1 ]
Li, Chun [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Inst Biochem Engn, Sch Chem & Chem Engn, Minist Ind & Informat Technol,Key Lab Med Mol Sci, Beijing 100081, Peoples R China
[2] Tsinghua Univ, Dept Chem Engn, Key Lab Ind Biocatalysis, Minist Educ, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Synthet & Syst Biol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Glycyrrhetinic acid; Transporters; Deep learning; Molecular docking; In-silico screening; PICK C1 PROTEIN; SUBCELLULAR-LOCALIZATION; MEMBRANE TRANSPORTERS; UREA TRANSPORTER; ABC TRANSPORTERS; CLASSIFICATION; MUTATIONS; PROFILES; SEQUENCE; DATABASE;
D O I
10.1016/j.bej.2022.108375
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glycyrrhetinic acid (GA) is one of the major bioactive components of the leguminous plant Glycyrrhiza spp. (Chinese licorice). The mechanism by which GA is transported within or out of cells remains completely unknown. Given the fact that living organisms harbor thousands of membrane transporters, experimental verification of membrane transporters for specific GA transporters is both laborious and time consuming. In this study, we carried out virtual screening of membrane transporters to predict their probability of binding with GA. Our mining strategy relied on deep learning prediction of drug-target interactions (DTI) combined with molecular docking. We used combinations of drug and protein descriptors to create 12 deep learning models to compare the performance of each descriptor followed by the evaluation of predictions via molecular docking scores. The ABC transporter BPT1p was predicted as a target that achieved the highest docking score among all tested proteins (-10.9 kcal/mol). Additionally, the models predictions of ABC transporters such as NPC1, MRP1, MRP3, NPC1L1, ABCA3 and PDR11, which have similar substrates reflect the ability of the models to learn the sequence features associated with similar compound molecules. We conclude that, our mining method was an effective approach for predicting membrane transporter substrates.
引用
收藏
页数:15
相关论文
共 81 条
[1]   PSSM-based prediction of DNA binding sites in proteins [J].
Ahmad, S ;
Sarai, A .
BMC BIOINFORMATICS, 2005, 6 (1)
[2]   TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information [J].
Alballa, Munira ;
Aplop, Faizah ;
Butler, Gregory .
PLOS ONE, 2020, 15 (01)
[3]   Cloning and characterization of the human urea transporter UT-A1 and mapping of the human Slc14a2 gene [J].
Bagnasco, SM ;
Peng, T ;
Janech, MG ;
Karakashian, A ;
Sands, JM .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2001, 281 (03) :F400-F406
[4]   Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? [J].
Bajusz, David ;
Racz, Anita ;
Heberger, Kroly .
JOURNAL OF CHEMINFORMATICS, 2015, 7
[5]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[6]   Genomic Inventory and Transcriptional Analysis of Medicago truncatula Transporters [J].
Benedito, Vagner A. ;
Li, Haiquan ;
Dai, Xinbin ;
Wandrey, Maren ;
He, Ji ;
Kaundal, Rakesh ;
Torres-Jerez, Ivone ;
Gomez, S. Karen ;
Harrison, Maria J. ;
Tang, Yuhong ;
Zhao, Patrick X. ;
Udvardi, Michael K. .
PLANT PHYSIOLOGY, 2010, 152 (03) :1716-1730
[7]   ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST [J].
Bhasin, M ;
Raghava, GPS .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W414-W419
[8]   Classification of nuclear receptors based on amino acid composition and dipeptide composition [J].
Bhasin, M ;
Raghava, GPS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (22) :23262-23266
[9]   The role of ABCG-type ABC transporters in phytohormone transport [J].
Borghi, Lorenzo ;
Kang, Joohyun ;
Ko, Donghwi ;
Lee, Youngsook ;
Martinoia, Enrico .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2015, 43 :924-930
[10]   Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis [J].
Carstea, ED ;
Morris, JA ;
Coleman, KG ;
Loftus, SK ;
Zhang, D ;
Cummings, C ;
Gu, J ;
Rosenfeld, MA ;
Pavan, WJ ;
Krizman, DB ;
Nagle, J ;
Polymeropoulos, MH ;
Sturley, SL ;
Ioannou, YA ;
Higgins, ME ;
Comly, M ;
Cooney, A ;
Brown, A ;
Kaneski, CR ;
BlanchetteMackie, EJ ;
Dwyer, NK ;
Neufeld, EB ;
Chang, TY ;
Liscum, L ;
Strauss, JF ;
Ohno, K ;
Zeigler, M ;
Carmi, R ;
Sokol, J ;
Markie, D ;
ONeill, RR ;
vanDiggelen, OP ;
Elleder, M ;
Patterson, MC ;
Brady, RO ;
Vanier, MT ;
Pentchev, PG ;
Tagle, DA .
SCIENCE, 1997, 277 (5323) :228-231