On Deep Reinforcement Learning for Traffic Engineering in SD-WAN

被引:51
作者
Troia, Sebastian [1 ,2 ]
Sapienza, Federico [1 ,3 ]
Vare, Leonardo [1 ,3 ]
Maier, Guido [1 ,2 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn DEIB, I-20133 Milan, Italy
[2] SWAN Networks, I-20124 Milan, Italy
[3] Huawei Italia, I-20147 Milan, Italy
关键词
Software-Defined Networking (SDN); Software-Defined Wide Area Network (SD-WAN); deep reinforcement learning; Enterprise Networking; NETWORKING;
D O I
10.1109/JSAC.2020.3041385
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The demand for reliable and efficient Wide Area Networks (WANs) from business customers is continuously increasing. Companies and enterprises use WANs to exchange critical data between headquarters, far-off business branches and cloud data centers. Many WANs solutions have been proposed over the years, such as: leased lines, Frame Relay, Multi-Protocol Label Switching (MPLS), Virtual Private Networks (VPN). Each solution positions differently in the trade-off between reliability, Quality of Service (QoS) and cost. Today, the emerging technology for WAN is Software-Defined Wide Area Networking (SD-WAN) that introduces the Software-Defined Networking (SDN) paradigm into the enterprise-network market. SD-WAN can support differentiated services over public WAN by dynamically reconfiguring in real-time network devices at the edge of the network according to network measurements and service requirements. On the one hand, SD-WAN reduces the high costs of guaranteed QoS WAN solutions (as MPLS), without giving away reliability in practical scenarios. On the other, it brings numerous technical challenges, such as the implementation of Traffic Engineering (TE) methods. TE is critically important for enterprises not only to efficiently orchestrate network traffic among the edge devices, but also to keep their services always available. In this work, we develop different kind of TE algorithms with the aim of improving the performance of an SD-WAN based network in terms of service availability. We first evaluate the performance of baseline TE algorithms. Then, we implement different deep Reinforcement Learning (deep-RL) algorithms to overcome the limitations of the baseline approaches. Specifically, we implement three kinds of deep-RL algorithms, which are: policy gradient, TD-lambda and deep Q-learning. Results show that a deep-RL algorithm with a well-designed reward function is capable of increasing the overall network availability and guaranteeing network protection and restoration in SD-WAN.
引用
收藏
页码:2198 / 2212
页数:15
相关论文
共 50 条
  • [41] Poster: <SmartTE: Partially Deployed Segment Routing for Smart Traffic Engineering with Deep Reinforcement Learning>
    Luan, Zeyu
    Li, Qing
    Jiang, Yong
    2021 IFIP NETWORKING CONFERENCE AND WORKSHOPS (IFIP NETWORKING), 2021,
  • [42] MATE: When multi-agent Deep Reinforcement Learning meets Traffic Engineering in multi-domain networks
    Luan, Zeyu
    Li, Qing
    Jiang, Yong
    Duan, Jingpu
    Zheng, Ruobin
    Chen, Dingding
    Liu, Shaoteng
    COMPUTER NETWORKS, 2024, 247
  • [43] Adaptive traffic light control using deep reinforcement learning technique
    Ritesh Kumar
    Nistala Venkata Kameshwer Sharma
    Vijay K. Chaurasiya
    Multimedia Tools and Applications, 2024, 83 : 13851 - 13872
  • [44] Researches on Intelligent Traffic Signal Control Based on Deep Reinforcement Learning
    Luo, Juan
    Li, Xinyu
    Zheng, Yanliu
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 729 - 734
  • [45] NETWORK ABNORMAL TRAFFIC DETECTION FRAMEWORK BASED ON DEEP REINFORCEMENT LEARNING
    Dong, Shi
    Xia, Yuanjun
    Wang, Tao
    IEEE WIRELESS COMMUNICATIONS, 2024, 31 (03) : 185 - 193
  • [46] Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation Study
    Tan, Jiyuan
    Yuan, Qian
    Guo, Weiwei
    Xie, Na
    Liu, Fuyu
    Wei, Jing
    Zhang, Xinwei
    SENSORS, 2022, 22 (22)
  • [47] Distributed Traffic Signal Control with Fairness Using Deep Reinforcement Learning
    Shirasaka, Shogo
    Kodama, Naoki
    Harada, Taku
    2023 SICE INTERNATIONAL SYMPOSIUM ON CONTROL SYSTEMS, SICE ISCS, 2023, : 117 - 122
  • [48] A new traffic signaling model based on graph and deep reinforcement learning
    Turan, Erhan
    Dandil, Besir
    Avci, Engin
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2025, 40 (01): : 85 - 101
  • [49] Distributed Optimization of Regional Traffic Signals via Deep Reinforcement Learning
    Cui, Tongchao
    Liu, Xudong
    Zhang, Liguo
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6130 - 6135
  • [50] Stability Analysis in Mixed-Autonomous Traffic With Deep Reinforcement Learning
    Lee, Dongsu
    Kwon, Minhae
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) : 2848 - 2862