On Deep Reinforcement Learning for Traffic Engineering in SD-WAN

被引:51
作者
Troia, Sebastian [1 ,2 ]
Sapienza, Federico [1 ,3 ]
Vare, Leonardo [1 ,3 ]
Maier, Guido [1 ,2 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn DEIB, I-20133 Milan, Italy
[2] SWAN Networks, I-20124 Milan, Italy
[3] Huawei Italia, I-20147 Milan, Italy
关键词
Software-Defined Networking (SDN); Software-Defined Wide Area Network (SD-WAN); deep reinforcement learning; Enterprise Networking; NETWORKING;
D O I
10.1109/JSAC.2020.3041385
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The demand for reliable and efficient Wide Area Networks (WANs) from business customers is continuously increasing. Companies and enterprises use WANs to exchange critical data between headquarters, far-off business branches and cloud data centers. Many WANs solutions have been proposed over the years, such as: leased lines, Frame Relay, Multi-Protocol Label Switching (MPLS), Virtual Private Networks (VPN). Each solution positions differently in the trade-off between reliability, Quality of Service (QoS) and cost. Today, the emerging technology for WAN is Software-Defined Wide Area Networking (SD-WAN) that introduces the Software-Defined Networking (SDN) paradigm into the enterprise-network market. SD-WAN can support differentiated services over public WAN by dynamically reconfiguring in real-time network devices at the edge of the network according to network measurements and service requirements. On the one hand, SD-WAN reduces the high costs of guaranteed QoS WAN solutions (as MPLS), without giving away reliability in practical scenarios. On the other, it brings numerous technical challenges, such as the implementation of Traffic Engineering (TE) methods. TE is critically important for enterprises not only to efficiently orchestrate network traffic among the edge devices, but also to keep their services always available. In this work, we develop different kind of TE algorithms with the aim of improving the performance of an SD-WAN based network in terms of service availability. We first evaluate the performance of baseline TE algorithms. Then, we implement different deep Reinforcement Learning (deep-RL) algorithms to overcome the limitations of the baseline approaches. Specifically, we implement three kinds of deep-RL algorithms, which are: policy gradient, TD-lambda and deep Q-learning. Results show that a deep-RL algorithm with a well-designed reward function is capable of increasing the overall network availability and guaranteeing network protection and restoration in SD-WAN.
引用
收藏
页码:2198 / 2212
页数:15
相关论文
共 50 条
  • [31] A survey of reinforcement and deep reinforcement learning for coordination in intelligent traffic light control
    Saadi, Aicha
    Abghour, Noureddine
    Chiba, Zouhair
    Moussaid, Khalid
    Ali, Saadi
    JOURNAL OF BIG DATA, 2025, 12 (01)
  • [32] A comprehensive survey on software-defined wide area network (SD-WAN): principles, opportunities and future challenges
    Ouamri, Mohamed Amine
    Alharbi, Turki
    Singh, Daljeet
    Sylia, Zenadji
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [33] Deep Reinforcement Learning for Router Selection in Network With Heavy Traffic
    Ding, Ruijin
    Xu, Yadong
    Gao, Feifei
    Shen, Xuemin
    Wu, Wen
    IEEE ACCESS, 2019, 7 : 37109 - 37120
  • [34] A survey on deep reinforcement learning approaches for traffic signal control
    Zhao, Haiyan
    Dong, Chengcheng
    Cao, Jian
    Chen, Qingkui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [35] Optimization Control of Adaptive Traffic Signal with Deep Reinforcement Learning
    Cao, Kerang
    Wang, Liwei
    Zhang, Shuo
    Duan, Lini
    Jiang, Guiminx
    Sfarra, Stefano
    Zhang, Hai
    Jung, Hoekyung
    ELECTRONICS, 2024, 13 (01)
  • [36] Traffic signal control method based on deep reinforcement learning
    Liu Z.-M.
    Ye B.-L.
    Zhu Y.-D.
    Yao Q.
    Wu W.-M.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (06): : 1249 - 1256
  • [37] Deep Reinforcement Learning for Addressing Disruptions in Traffic Light Control
    Rasheed, Faizan
    Yau, Kok-Lim Alvin
    Noor, Rafidah Md
    Chong, Yung-Wey
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 2225 - 2247
  • [38] Traffic Engineering in Partially Deployed Segment Routing Over IPv6 Network With Deep Reinforcement Learning
    Tian, Ying
    Wang, Zhiliang
    Yin, Xia
    Shi, Xingang
    Guo, Yingya
    Geng, Haijun
    Yang, Jiahai
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2020, 28 (04) : 1573 - 1586
  • [39] A Regional Traffic Signal Control Strategy with Deep Reinforcement Learning
    Li, Congcong
    Yan, Fei
    Zhou, Yiduo
    Wu, Jia
    Wang, Xiaomin
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 7690 - 7695
  • [40] A Deep Reinforcement Learning Approach to Traffic Signal Control With Temporal Traffic Pattern Mining
    Ma, Dongfang
    Zhou, Bin
    Song, Xiang
    Dai, Hanwen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 11789 - 11800