On trees and noncrossing partitions

被引:11
作者
Klazar, M [1 ]
机构
[1] Charles Univ, Dept Appl Math, CR-11800 Praha 1, Czech Republic
关键词
noncrossing partition; enumeration; tree; bijection;
D O I
10.1016/S0166-218X(97)00118-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a simple and natural proof of (an extension of) the identity P(k, l, n) = P-2(k - 1, l - 1, n - 1). The number P(k, l, n) counts noncrossing partitions of {1,2,..., l} into n parts such that no part contains two numbers x and y, 0 < y - x < k. The lower index 2 indicates partitions with no part of size three or more. We use the identity to give quick proofs of the closed formulae for P(k, l, n) when k is 1, 2, or 3. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:263 / 269
页数:7
相关论文
共 50 条
  • [31] Functorially finite hearts, simple-minded systems in negative cluster categories, and noncrossing partitions
    Simoes, Raquel Coelho
    Pauksztello, David
    Ploog, David
    Zvonareva, Alexandra
    [J]. COMPOSITIO MATHEMATICA, 2022, 158 (01) : 211 - 243
  • [32] REVERSE MATHEMATICS, COMPUTABILITY, AND PARTITIONS OF TREES
    Chubb, Jennifer
    Hirst, Jeffry L.
    Mcnicholl, Timothy H.
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (01) : 201 - 215
  • [33] Generalized (P, ω)-partitions and generating functions for trees
    Arima, I
    Tagawa, H
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 103 (01) : 137 - 150
  • [34] Minimum Cost Partitions of Trees with Supply and Demand
    Ito, Takehiro
    Hara, Takuya
    Zhou, Xiao
    Nishizeki, Takao
    [J]. ALGORITHMICA, 2012, 64 (03) : 400 - 415
  • [35] Minimum Cost Partitions of Trees with Supply and Demand
    Takehiro Ito
    Takuya Hara
    Xiao Zhou
    Takao Nishizeki
    [J]. Algorithmica, 2012, 64 : 400 - 415
  • [36] Lexicographical ordering by spectral moments of trees with k pendant vertices and integer partitions
    Cheng, Bo
    Liu, Bolian
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 858 - 861
  • [37] Chains in the noncrossing partition lattice
    Reading, Nathan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (03) : 875 - 886
  • [38] Decomposition and Merging Algorithms for Noncrossing Forests
    Pang, Sabrina X. M.
    Lv, Lun
    Deng, Xiaoming
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (01)
  • [39] Continuum-sites stepping-stone models, coalescing exchangeable partitions and random trees
    Donnelly, P
    Evans, SN
    Fleischmann, K
    Kurtz, TG
    Zhou, XW
    [J]. ANNALS OF PROBABILITY, 2000, 28 (03) : 1063 - 1110
  • [40] Enveloping Operads and Bicolored Noncrossing Configurations
    Chapoton, Frederic
    Giraudo, Samuele
    [J]. EXPERIMENTAL MATHEMATICS, 2014, 23 (03) : 332 - 349