Limiting Profile of the Blow-up Solutions for the Fourth-order Nonlinear Schrodinger Equation

被引:1
作者
Zhu, Shihui
Zhang, Jian
Yang, Han
机构
[1] Sichuan Normal Univ, Visual Comp & Vitual Real Key Lab, Chengdu 610066, Peoples R China
[2] SW Jiaotong Univ, Coll Math, Chengdu 610031, Peoples R China
关键词
Nonlinear Schrodinger equation; Blow-up solution; Profile decomposition; Limiting profile; GLOBAL WELL-POSEDNESS; MASS CONCENTRATION; DIMENSIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the blow-up solutions of the focusing fourth-order mass-critical nonlinear Schrodinger equation. Establishing the profile decomposition of the bounded sequences in H-2, we obtain the variational characteristics of the corresponding ground state and a compactness lemma. Moreover, we obtain the L-2-concentration of the blow-up solutions and the limiting profile of the minimal mass blow-up solutions in the general case.
引用
收藏
页码:187 / 205
页数:19
相关论文
共 36 条
[1]  
BARUCH G, SINGULAR SOLUTIONS B
[2]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[3]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[4]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[5]  
Colliander J, 2005, MATH RES LETT, V12, P357
[6]   Self-focusing with fourth-order dispersion [J].
Fibich, G ;
Ilan, B ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (04) :1437-1462
[7]  
GERARD P., 1998, ESAIM Control Optim. Calc. Var., V3, P213
[8]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[9]  
Hmidi T, 2005, INT MATH RES NOTICES, V2005, P2815
[10]   Remarks on the blowup for the L2-critical nonlinear Schrodinger equations [J].
Hmidi, Taoufik ;
Keraani, Sahbi .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1035-1047