Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules

被引:160
作者
Mokrane, Fatima-Zohra [1 ,2 ]
Lu, Lin [2 ]
Vavasseur, Adrien [1 ]
Otal, Philippe [1 ]
Peron, Jean-Marie [3 ]
Luk, Lyndon [2 ]
Yang, Hao [2 ]
Ammari, Samy [4 ]
Saenger, Yvonne [5 ]
Rousseau, Herve [1 ]
Zhao, Binsheng [2 ]
Schwartz, Lawrence H. [2 ]
Dercle, Laurent [2 ,6 ]
机构
[1] Rangueil Univ Hosp, Radiol Dept, Toulouse, France
[2] Columbia Univ, New York Presbyterian Hosp, Dept Radiol, Vagelos Coll Phys & Surg, New York, NY 10032 USA
[3] Purpan Univ Hosp, Hepatol Dept, Toulouse, France
[4] Univ Paris Saclay, Serv Radiol, Gustave Roussy, Villejuif, France
[5] Columbia Univ, Dept Med, Div Hematol Oncol, Med Ctr New York Presbyterian, New York, NY USA
[6] Univ Paris Saclay, Gustave Roussy Inst, INSERM U1015, F-94805 Villejuif, France
关键词
Cirrhosis; Radiomics; Hepatocellular carcinoma; MICROVASCULAR INVASION; COMPUTED-TOMOGRAPHY; DATA SYSTEM; 20; MM; CT; SMALLER; VALIDATION; ACCURACY; CRITERIA; OUTCOMES;
D O I
10.1007/s00330-019-06347-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To enhance clinician's decision-making by diagnosing hepatocellular carcinoma (HCC) in cirrhotic patients with indeterminate liver nodules using quantitative imaging features extracted from triphasic CT scans. Material and methods We retrospectively analyzed 178 cirrhotic patients from 27 institutions, with biopsy-proven liver nodules classified as indeterminate using the European Association for the Study of the Liver (EASL) guidelines. Patients were randomly assigned to a discovery cohort (142 patients (pts.)) and a validation cohort (36 pts.). Each liver nodule was segmented on each phase of triphasic CT scans, and 13,920 quantitative imaging features (12 sets of 1160 features each reflecting the phenotype at one single phase or its change between two phases) were extracted. Using machine-learning techniques, the signature was trained and calibrated (discovery cohort), and validated (validation cohort) to classify liver nodules as HCC vs. non-HCC. Effects of segmentation and contrast enhancement quality were also evaluated. Results Patients were predominantly male (88%) and CHILD A (65%). Biopsy was positive for HCC in 77% of patients. LI-RADS scores were not different between HCC and non-HCC patients. The signature included a single radiomics feature quantifying changes between arterial and portal venous phases: V-Delta-A(_)DWT1_LL_Variance-2D and reached area under the receiver operating characteristic curve (AUC) of 0.70 (95%CI 0.61-0.80) and 0.66 (95%CI 0.64-0.84) in discovery and validation cohorts, respectively. The signature was influenced neither by segmentation nor by contrast enhancement. Conclusion A signature using a single feature was validated in a multicenter retrospective cohort to diagnose HCC in cirrhotic patients with indeterminate liver nodules. Artificial intelligence could enhance clinicians' decision by identifying a subgroup of patients with high HCC risk.
引用
收藏
页码:558 / 570
页数:13
相关论文
共 31 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   EASL and AASLD recommendations for the diagnosis of HCC to the test of daily practice [J].
Aube, Christophe ;
Oberti, Frederic ;
Lonjon, Julie ;
Pageaux, Georges ;
Seror, Olivier ;
N'Kontchou, Gisele ;
Rode, Agnes ;
Radenne, Sylvie ;
Cassinotto, Christophe ;
Vergniol, Julien ;
Bricault, Ivan ;
Leroy, Vincent ;
Ronot, Maxime ;
Castera, Laurent ;
Michalak, Sophie ;
Esvan, Maxime ;
Vilgrain, Valerie .
LIVER INTERNATIONAL, 2017, 37 (10) :1515-1525
[3]   Noninvasive radiomics signature based on quantitative analysis of computed tomography images as a surrogate for microvascular invasion in hepatocellular carcinoma: A pilot study [J].
Bakr, Shaimaa ;
Echegaray, Sebastian ;
Shah, Rajesh ;
Kamaya, Aya ;
Louie, John ;
Napel, Sandy ;
Kothary, Nishita ;
Gevaert, Olivier .
Journal of Medical Imaging, 2017, 4 (04)
[4]   A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma [J].
Banerjee, Sudeep ;
Wang, David S. ;
Kim, Hyun J. ;
Sirlin, Claude B. ;
Chan, Michael G. ;
Korn, Ronald L. ;
Rutman, Aaron M. ;
Siripongsakun, Surachate ;
Lu, David ;
Imanbayev, Galym ;
Kuo, Michael D. .
HEPATOLOGY, 2015, 62 (03) :792-800
[5]   Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters [J].
Berenguer, Roberto ;
del Rosario Pastor-Juan, Maria ;
Canales-Vazquez, Jesus ;
Castro-Garcia, Miguel ;
Villas, Maria Victoria ;
Mansilla Legorburo, Francisco ;
Sabater, Sebastia .
RADIOLOGY, 2018, 288 (02) :407-415
[6]   LI-RADS for MR Imaging Diagnosis of Hepatocellular Carcinoma: Performance of Major and Ancillary Features [J].
Cerny, Milena ;
Bergeron, Catherine ;
Billiard, Jean-Sebastien ;
Murphy-Lavallee, Jessica ;
Olivie, Damien ;
Berube, Joshua ;
Fan, Boyan ;
Castel, Helene ;
Turcotte, Simon ;
Perreault, Pierre ;
Chagnon, Miguel ;
Tang, An .
RADIOLOGY, 2018, 288 (01) :118-128
[7]   Liver Imaging Reporting and Data System with MR Imaging: Evaluation in Nodules 20 mm or Smaller Detected in Cirrhosis at Screening US [J].
Darnell, Anna ;
Forner, Alejandro ;
Rimola, Jordi ;
Reig, Maria ;
Garcia-Criado, Angeles ;
Ayuso, Carmen ;
Bruix, Jordi .
RADIOLOGY, 2015, 275 (03) :698-707
[8]  
Dercle L, 2017, JCO CLIN CANCER INFO, V1, DOI 10.1200/CCI.17.00108
[9]   Spleno-hepatic index to predict portal hypertension by equilibrium radionuclide ventriculography [J].
Dercle, Laurent ;
Billey, Chloe ;
Cognet, Thomas ;
Cassol, Emmanuelle ;
Sinigaglia, Mathieu ;
Pascal, Pierre ;
Berry, Isabelle ;
Otal, Philippe ;
Bureau, Christophe ;
Lairez, Olivier .
NUCLEAR MEDICINE COMMUNICATIONS, 2018, 39 (12) :1138-1142
[10]   Diagnostic and prognostic value of 18F-FDG PET, CT, and MRI in perineural spread of head and neck malignancies [J].
Dercle, Laurent ;
Hartl, Dana ;
Rozenblum-Beddok, Laura ;
Mokrane, Fatima-Zohra ;
Seban, Romain-David ;
Yeh, Randy ;
Bidault, Francois ;
Ammari, Samy .
EUROPEAN RADIOLOGY, 2018, 28 (04) :1761-1770