Probing the minimal geometric deformation with trace and Weyl anomalies

被引:33
|
作者
Meert, P. [1 ]
da Rocha, R. [2 ]
机构
[1] Univ Fed ABC, Ctr Phys, BR-09210580 Santo Andre, SP, Brazil
[2] Fed Univ ABC, Ctr Math, BR-09210580 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ANISOTROPIC STRANGE STARS; BRANE-WORLD STARS; GENERAL-RELATIVITY; BLACK-HOLES; COMPACT STAR; MODELS;
D O I
10.1016/j.nuclphysb.2021.115420
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The method of minimal geometric deformation (MGD) is used to derive static, strongly gravitating, spherically symmetric, compact stellar distributions. The trace and Weyl anomalies are then employed to probe the MGD in the holographic setup, as a realistic model, playing a prominent role in AdS/CFT. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] TOPOLOGICAL APPROACH TO WEYL AND SUPER-WEYL ANOMALIES IN STRING THEORY
    LOUIS, J
    OVRUT, BA
    RAMA, SK
    PHYSICAL REVIEW D, 1988, 38 (10): : 3094 - 3104
  • [42] PROBLEMS IN GEOMETRIC PROBING
    SKIENA, SS
    ALGORITHMICA, 1989, 4 (04) : 599 - 605
  • [43] The dilaton Wess-Zumino action in six dimensions from Weyl gauging: local anomalies and trace relations
    Coriano, Claudio
    Delle Rose, Luigi
    Marzo, Carlo
    Serino, Mirko
    CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (10)
  • [44] Geometric optics in conformal Weyl gravity
    Hakimov, Abdullo
    Turimov, Bobur
    Abdujabbarov, Ahmadjon
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2022, 31 (01):
  • [45] Weyl groups, lattices and geometric manifolds
    Everitt, Brent
    Howlett, Robert B.
    GEOMETRIAE DEDICATA, 2009, 142 (01) : 1 - 21
  • [46] A Weyl-Dirac geometric particle
    Israelit, M
    Rosen, N
    FOUNDATIONS OF PHYSICS, 1996, 26 (05) : 585 - 594
  • [47] Weyl formula and thermodynamics of geometric flow
    Dutta, Parikshit
    Chattopadhyay, Arghya
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [48] Weyl groups, lattices and geometric manifolds
    Brent Everitt
    Robert B. Howlett
    Geometriae Dedicata, 2009, 142
  • [49] WEYL MANIFOLDS AND DEFORMATION QUANTIZATION
    OMORI, H
    MAEDA, Y
    YOSHIOKA, A
    ADVANCES IN MATHEMATICS, 1991, 85 (02) : 224 - 255
  • [50] Dark matter as a Weyl geometric effect
    Burikham, Piyabut
    Harko, Tiberiu
    Pimsamarn, Kulapant
    Shahidi, Shahab
    PHYSICAL REVIEW D, 2023, 107 (06)