Qualitative uncertainty principles for the windowed Opdam-Cherednik transform on weighted modulation spaces

被引:3
作者
Mondal, Shyam Swarup [1 ]
Poria, Anirudha [2 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati, India
[2] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
基金
欧洲研究理事会;
关键词
Cowling-Price's theorem; Hardy's theorem; Morgan's theorem; weighted modulation spaces; windowed Opdam-Cherednik transform; DUNKL OPERATOR; THEOREM;
D O I
10.1002/mma.8376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to establish a few qualitative uncertainty principles for the windowed Opdam-Cherednik transform on weighted modulation spaces associated with this transform. In particular, we obtain Cowling-Price's, Hardy's and Morgan's uncertainty principles for this transform on weighted modulation spaces. The proofs of the results are based on versions of the Phragmen-Lindlof type result for several complex variables on weighted modulation spaces and the properties of the Gaussian kernel associated with the Jacobi-Cherednik operator.
引用
收藏
页码:10424 / 10439
页数:16
相关论文
共 33 条
[1]   Opdam's hypergeometric functions: product formula and convolution structure in dimension 1 [J].
Anker, Jean-Philippe ;
Ayadi, Fatma ;
Sifi, Mohamed .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (01) :11-44
[2]  
Ben Farah S, 2003, RUSS J MATH PHYS, V10, P245
[4]   POSITIVITY OF THE INTERTWINING OPERATOR AND HARMONIC ANALYSIS ASSOCIATED WITH THE JACOBI-DUNKL OPERATOR ON R [J].
Chouchane, F. ;
Mili, M. ;
Trimeche, K. .
ANALYSIS AND APPLICATIONS, 2003, 1 (04) :387-412
[5]  
COWLING M, 1983, LECT NOTES MATH, V992, P443
[6]   Uncertainty principles for the Cherednik transform [J].
Daher, R. ;
Hamad, S. L. ;
Kawazoe, T. ;
Shimeno, N. .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (03) :429-436
[7]   UNCERTAINTY PRINCIPLES AND SIGNAL RECOVERY [J].
DONOHO, DL ;
STARK, PB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) :906-931
[8]  
Dunkl CF, 1992, Contemp. Math, V138, P123
[9]  
Feichtinger H. G., 2003, P INT C WAV APPL, P99
[10]   Gabor frames and time-frequency analysis of distributions [J].
Feichtinger, HG ;
Grochenig, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 146 (02) :464-495