Hypersurfaces of constant curvature in hyperbolic space II

被引:19
作者
Guan, Bo [1 ]
Spruck, Joel [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
Hyperbolic space; hypersurfaces of constant curvature; asymptotic boundary; fully nonlinear elliptic equations; 2ND-ORDER ELLIPTIC-EQUATIONS; CONVEX HYPERSURFACES; DIRICHLET PROBLEM; BOUNDARY;
D O I
10.4171/JEMS/215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the second of a series of papers in which we investigate the problem of finding, in hyperbolic space, complete hypersurfaces of constant curvature with a prescribed asymptotic boundary at infinity for a general class of curvature functions. In this paper we focus on graphs over a domain with nonnegative mean curvature.
引用
收藏
页码:797 / 817
页数:21
相关论文
共 11 条
[1]  
[Anonymous], 1955, FUNCTIONAL ANAL
[2]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[3]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[4]  
Caffarelli L., 1986, IV. Starshaped Compact Weingarten Hypersurfaces, P1
[5]  
CAFFARELLI LA, 1988, COMMUN PUR APPL MATH, V41, P41
[6]   Hypersurfaces of constant mean curvature in hyperbolic space with prescribed asymptotic boundary at infinity [J].
Guan, B ;
Spruck, J .
AMERICAN JOURNAL OF MATHEMATICS, 2000, 122 (05) :1039-1060
[7]   Locally convex hypersurfaces of constant curvature with boundary [J].
Guan, B ;
Spruck, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1311-1331
[8]   Hypersurfaces of Constant Curvature in Hyperbolic Space I [J].
Guan, Bo ;
Spruck, Joel ;
Szapiel, Marek .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (04) :772-795
[9]  
Ivochkina N., 1996, Geometric Analysis and the Calculus of Variations, P125
[10]  
NELLI B, 1996, GEOMETRIC ANAL CALCU, P253