Detection of Protein Conformational Changes with Multilayer Graphene Nanopore Sensors

被引:16
作者
Qiu, Wanzhi [1 ,2 ]
Skafidas, Efstratios [1 ,2 ]
机构
[1] Univ Melbourne, Ctr Neural Engn, Carlton, Vic 3053, Australia
[2] Univ Melbourne, Dept Elect & Elect Engn, Parkville, Vic 3053, Australia
关键词
protein conformational change; graphene nanopores; biosensors; electrostatic potential; quantum conductance; PHOTON-COUNTING HISTOGRAM; EMPIRICAL FORCE-FIELD; MOLECULAR-DYNAMICS; NUCLEIC-ACIDS; POROUS GRAPHENE; TIGHT-BINDING; SIMULATIONS; NANORIBBONS; ZIGZAG; TARGET;
D O I
10.1021/am5040279
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Detecting conformational change in protein or peptide is imperative in understanding their dynamic function and diagnosing diseases. Existing techniques either rely on ensemble average that lacks the necessary sensitivity or require florescence labeling. Here we propose to discriminate between different protein conformations with multiple layers of graphene nanopore sensors by measuring the effect of protein-produced electrostatic potential (EP) on electric transport. Using conformations of the octapeptide Angiotensin II obtained through molecular dynamics simulations, we show that the EP critically depends on the geometries of constituent atoms and each conformation carries a unique EP signature. We then, using quantum transport simulations, reveal that these characteristic EP profiles cause distinctive modulation to electric charge densities of the graphene nanopores, leading to distinguishable changes in conductivity. Our results open the potential of label-free, single-molecule, and real-time detection of protein conformational changes.
引用
收藏
页码:16777 / 16781
页数:5
相关论文
共 42 条
[1]   All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes [J].
Al-Dirini, Feras ;
Hossain, Faruque M. ;
Nirmalathas, Ampalavanapillai ;
Skafidas, Efstratios .
SCIENTIFIC REPORTS, 2014, 4
[2]   Porous Graphene as an Atmospheric Nanofilter [J].
Blankenburg, Stephan ;
Bieri, Marco ;
Fasel, Roman ;
Muellen, Klaus ;
Pignedoli, Carlo A. ;
Passerone, Daniele .
SMALL, 2010, 6 (20) :2266-2271
[3]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[4]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[5]   Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy [J].
Calleja, V ;
Ameer-Beg, SM ;
Vojnovic, B ;
Woscholski, R ;
Downward, J ;
Larijani, B .
BIOCHEMICAL JOURNAL, 2003, 372 :33-40
[6]   Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics [J].
Chang, Po-Hao ;
Nikolic, Branislav K. .
PHYSICAL REVIEW B, 2012, 86 (04)
[7]   Protein misfolding, functional amyloid, and human disease [J].
Chiti, Fabrizio ;
Dobson, Christopher M. .
ANNUAL REVIEW OF BIOCHEMISTRY, 2006, 75 :333-366
[8]   Folding and stability of the three-stranded β-sheet peptide betanova:: Insights from molecular dynamics simulations [J].
Colombo, G ;
Roccatano, D ;
Mark, AE .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 46 (04) :380-392
[9]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[10]  
Foloppe N, 2000, J COMPUT CHEM, V21, P86, DOI 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO